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Abstract 
 

In this research, the tram driving path identification system for driverless trams is 

proposed. The primary purpose of the system is to identify the path in front of a tram 

where the tram will occupy. With this system, it is highly expected that it will 

substantially assist with preventing collisions between trams and frontal obstacles, 

and other relevant hazardous incidents. For the proposed system, it consists of two 

main modules: the rail detection module and the boundary generating module. In the 

study of rail detection module, the comparative analysis of different types of rail 

detectors, including traditional methods and learning-based methods, is performed to 

investigate the most suitable rail detectors. The comparative results reveal that the 

deep learning-based models are more accurate and reliable. Further, the boundary 

generating module is designed. Subsequently, the preliminary test of the proposed 

identification system based on the rail detection and designed boundary generating 

modules is carried out. According to the preliminary result, the proposed identification 

system successfully managed to perform its designated task very well; hence, it can 

be said that this proposed tram driving path identification system is promising for 

driverless tram operations. 
 

Keywords: trams, driverless, driving path, rail detection, deep learning, boundary. 
 

1  Introduction 
 

In recent years, due to the rapid advancement of artificial intelligence as well as many 

scientific technologies and innovations, the widespread use of automation systems can 
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be witnessed in diverse fields, including railway engineering domain. Moreover, the 

reduction in birth rate in Japan over the last decades seems to have an undesired 

impact on the traffic demands, especially trains, and also the number of train drivers. 

For this reason, the realization of automation in railways is significant. Based on the 

standard “IEC 62267:2009 – Railway applications – Automated Guided Transport 

(AUGT) – Safety Requirements” [1], for the main features of driverless train 

operation (DTO) and unattended train operation (UTO), there will be no driver on-

board and the trains need to be able to detect obstacles and control themselves in order 

to avoid collisions. Current intelligent train detection systems leverage software and 

hardware available, for instance, advanced information transfer and communication, 

automatic train control as well as precise localization technologies to prevent crashes 

with on-track obstacles. This situation represents the high level of railway 

transportation modernization. The well-known examples of UTO trains in Japan is the 

Yurikamome line, meanwhile, those of DTO is the Tokyo Disney resort line. 
 

While fully automated train operations (ATOs) are already in the advanced stage 

of development, limited research effort has been focused on driverless trams. When it 

comes to driverless systems, particularly trams, the safety of the operation is 

undeniably of great importance. For trams, differing from trains, they are typically 

operated not only on dedicated tracks identical to trains, but also roadways commonly 

shared with cars, which are relatively more complicated in comparison with trains. 

Simultaneously, as a well-known fact, tram cars also navigate through city streets in 

which there is a high risk of fatal crash accidents resulting from the enormous number 

of pedestrians and cyclists. This strongly confirms the requirement of a fast and 

accurate perception system for driverless tram systems. 

 

To achieve the driverless tram operations, initially, the introduction of an ability to 

understand the frontal environment into the trams is crucial. Failure to grasp it can 

cause irreparable loss and damage to trams, their surrounding and trustworthy. With 

this safety concern, undoubtedly, one of the most critical things to first recognize is a 

tram driving path for enhancing safety against collisions between trams and obstacles 

appearing in the path to be occupied by trams. The definition of the tram driving path, 

in this paper, is the space between two rail tracks and the space between the rail tracks 

and the ends of a tram vehicle that will be occupied by the tram as it moves forward, 

as illustrated in Figure 1. Given this definition, it leads to this research study of the 

rail detection and boundary generating.   
 

In this paper, thus, the key methods for the tram driving path identification system 

are studied. The paper is organized as follows, in the first section, the overview idea 

and main components of the proposed system - rail detection and boundary generating 

modules, the framework, and the experiment description are provided in details. 

Successively, the comparative result of the different rail detectors within the rail 

detection module along with the preliminary test result of the introduced tram driving 

identification system are presented and discussed. In the final section, the conclusion 

of this research study is drawn based on the insights from the results and the future 

vision towards the sustainable development of this system by emphasizing the 

feasibility of its applications in real-world driverless tram commercial services. 
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Figure 1: Tram driving path 
 

2  Methods 
 

In this section, the overview of the tram driving path identification system, as depicted 

in Figure 1, and the outline of the internal algorithm are given in each subsequent 

subsection. First and foremost, this system comprises two district modules working in 

sequence, namely rail detection module and boundary generating module. 
 

 
 

Figure 2: Tram driving path identification algorithm 

 

2.1 Rail detection module 
 

For this module, it is a binary classification task. Consider the tram driving path shown 

in Figure 1, which indicates that the detection of rails is the utmost priority without 
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reservation. In general, there are two major categories of detection methods. The first 

one is a traditional image processing technique or known as a feature-based approach. 

This technique relies on features in an image. One of the features of rail tracks is the 

presence of edges, marked by its sharp contrast between the track and the surface on 

which it is placed. This sharp contrast can be represented by a large gradient in pixel 

intensities. By taking advantage of the edge feature, and applying edge detection 
techniques, the detection of railway tracks is assumed to be possible. One of the most 

widely-used edge detectors are Sobel edge detection and Canny edge detection, which 

are both selected for this study. 
 

Another category is the deep learning-based segmentation method. Until presently, 

deep learning stands out as an excellent tool in this regard, and countless segmentation 

models have been released. More specifically, the models can be classified into two 

types with respect to model architectures, including Convolutional Neural Networks 

(CNN) and transformers. Among those, some have swiftly risen to prominence, such 

as U-Net, PSPnet, DeeplabV3plus and SegFormer. The first three, U-Net, PSPnet and 

DeeplabV3plus, are all based on CNN, conversely, the latter, SegFormer, exploits 

transformers; all are selected for this study. Consequently, it is greatly anticipated that 

rail tracks in an image frame can be detected by segmenting with deep learning-based 

methods. In summary, for the deep learning-based method, the rail detection is 
regarded as a segmentation task, and the above-mentioned segmentation models will 

be compared to each other to figure out the most appropriate model for the module. 
 

2.2 Boundary generating module 

 

Figure 3: Boundary generating module framework 
 

The proposed boundary generating module aims to identify the space between tracks 

and the vehicle’s ends. The method involves the selection of region of interest (ROI), 

inverse perspective transformation, rail track fitting and centreline finding, calculating 

the radius of curvature and determining a clearance, as illustrated in Figure 3. 
 

 First of all, the inverse perspective transformation becomes part of this module 

because a certain feature can be correctly obtained if looked upon from a different 

perspective. A radius of curvature of rail tracks is such a feature. Actually, parallel 

rail tracks merge into one point, called vanishing point, in the distant area of the vision 

from a tram vehicle’s cab. The distance between two adjacent tracks decrease towards 

the vanishing point, making it difficult to calculate a radius of curvature. For this 

reason, the original image of the detected rail tracks, produced by the rail detection 
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module in a form of a binary image, is mapped into the top-view image using inverse 

perspective transformation to earn the parallel characteristic of the rail tracks. 

Figure 4: ROI selection, inverse perspective transformation and Laplacian derivative 
 

For actual rail tracks’ geometries, roughly, there are straight and curved tracks. In 

the light of this fact, a sufficiently-high order polynomial needs to be employed to 

handle the fitting of various tracks. Therefore, the third-order-polynomial function is 

adopted and its corresponding mathematical expression is written as below 
 

u = A + Bv + Cv2 + Dv3 

(1) 

Where, u is a horizontal pixel coordinate, v is a vertical pixel coordinate and 

A, B, C, D are coefficients of the third-order degree polynomial function 

Figure 5: Rail track fitting and track centreline fining 

Further, consider Figure 6, during negotiating a curved track, a rail vehicle’s car 

body does not follow the path of the curve owing to being a rigid body. Hence, the 

vehicle will project towards the outer rail track near its end [2]. To prevent a collision, 

a clearance required at the end of the vehicle is tremendously vital. This clearance is 

associated with the rail vehicle’s width, and end throw, which relies on the radius of 
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curvature of the track centerline, the vehicle’s length, and the center-to-center bogie 

distance. The corresponding mathematic equations are shown in Equation (2) and (3), 

 
 

Figure 6: Clearance of a rail vehicle at a curved track 

 

 

The equation of the radius of curvature is defined as  

 

R =  

[1 + (
du
dv

)
2

]

3/2

|
d2u
dv2|

 

(2) 

 

The formula for clearance is derived as follows  

 

Clearance = Half width + End throw =  
W

2
+

L2 − K2

8R
 

(3) 

Where, W is a rail vehicle’s width, L is a rail vehicle’s length, K is a center-to-

center distance between two bogies, and R is a radius curvature of track centerline 
 

Delving into the framework of this module, the initial step incorporates the ROI 

selection and inverse perspective transformation, which is applied to the segmented 

result from the rail detection module to acquire an aerial view of rail tracks. In this 

view, the rail tracks appear to be relatively parallel to each other, enabling the rail 

track fitting with a polynomial using Laplacian derivative, RANSAC algorithm, 

sliding windows and histogram to measure a radius of curvature of the track centerline 

later on. Following this, the clearance value will be computed to generate a boundary. 

Ultimately, the detected rail and the generated boundary are transformed back into the 

original image, and the visual illustration of the tram driving path is output. 
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2.3 Dataset and experiment details 
 

To attain the objective of this research, datasets and experimental tests are necessary 

for evaluating the quality of the proposed method under complex conditions and 

dynamic environment of railway systems. Particularly, the experiments are divided 

into two stages. The first experiment is set up for testing the rail detection module, 

while the second experiment is the preliminary test for the tram driving path 

identification system to examine whether it is potent for the designated task. 

 
 

The experimental data entirely comes from a public source dataset. This dataset 

offers a gigantic quantity of annotated frames related to rail transit scenes. The name 

of the dataset is Railsem19 [3]: the largest and most varied railway and tram scenario 

open dataset ever released containing 8500 images in total, which are captured from 

the ego-vehicle perspective along railway and tram lines with the variations in lighting 

and weather conditions. 

 
 

In order to fairly compare the performance of each rail detector, each deep-learning 

segmentation model is trained by using 5950 images randomly split from Railsem19 

Similarly, 1275 images of Railsem19 are randomly selected for creating a validation 

dataset. Then, the remaining serves as a test dataset to assess the effectiveness of each 

deep-learning model. On the other hand, since the conventional models, Sobel and 

Canny edge detectors, do not demand a training stage, all images from the dataset are 

used as a test dataset for them. About the training process, each deep learning model 

is trained for 40 epochs based on Jaccard loss function and Adam optimizer. 

Moreover, to increase the diversity of the dataset, the data augmentation is applied for 

preparing the data in the training stage with a variety of techniques, such as the 

horizontal flip, random rotation, random crop, random contrast, image blurring, 

adding Gaussian noise, colour transform, and changing hue and saturation values. 

 
 

As a further matter, each trained model is evaluated on the test data in a quantitative 

manner. In addition to ubiquitous evaluation metrics for binary segmentation task, 

including accuracy, precision and recall, the Intersection-over-Union (IoU) and 

processing time (frame per second: fps) metrics are also considered to help assess the 

inference performance and inference speed of the system in real time. Eventually, the 

identification system, which is constructed based on the rail detection module and the 

designed generating boundary module, will undergo the preliminary test. 

 
 

 Last but not least, several images of rail tracks are further gathered from the test 
track located at Kashiwa campus, the University of Tokyo. This certain dataset is 

implemented for the preliminary test of the proposed tram driving path identification 

system. In this step, the developed system will be tested with the set of data from the 

test track at Kashiwa campus without determining any metrics.  
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3  Results 
 

In this section, the experimental results of rail detectors and the preliminary test results 

of the proposed tram driving path identification systems are shown and discussed. 

 
 

The comparative result of the classical and learning-based approaches for rail track 

detection is presented in Table 1. Unfortunately, it was found that either Sobel or 

Canny detectors is unsuccessful in detecting rail tracks. It is obvious that they failed 

in almost all scenarios, especially when shadow, road marks and objects like humans 

or cars exist in the scenes, as illustrated in Figure 7. This is attributed to the fact that 

the shadow, road marks and such objects also have their edge features similar to the 

railway tracks and the inability of each edge detector to distinguish those edges, 

undermining the reliability of the traditional methods.  
 

 

On the contrary, for the deep learning-based approaches, they are proven to be 

effective in segmenting railway tracks from images with superior performances in 

comparison with the feature-based ones. In term of accuracy, precision, recall and also 

IoU, DeeplabV3plus outperforms the others. Nevertheless, it is the PSPNet model, 

which surpasses the others when considering the processing time as a major metric. 

As per the result, it can be noticed that the higher accuracy, precision, recall and IoU 

are obtained at the cost of worse processing time, and vice versa. Since this system is 

intended for real-time operation, it becomes imperative to maintain a balance between 

overall accuracy and processing time prior to the deployment of the system. 
 

It is worth noting that all deep learning models are built with ResNext50 backbone 

and trained on the personal computer with RTX 3060 GPU (VRAM 12 GB) under the 

environment of CUDA 11.4, Python 3.10.13 and Ubuntu. 

 
 

Type Model 
Accura

cy 

Precisi

on 
Recall IoU 

Processin

g time 

[fps] 

Traditional 

method 
Sobel Failed to detect rail tracks accurately 

Canny Failed to detect rail tracks accurately 

Deep learning-

based method 
U-Net 0.9940 0.9211 0.9531 0.8835 5.68 

PSPNet 0.9863 0.8663 0.8578 0.7624 11.6 

DeepLabV

3+ 
0.9949 0.9373 0.9550 0.8995 6.17 

SegFormer 0.9930 0.9117 0.9411 0.8656 5.00 

Table 1: The performance of each rail detection model 
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Figure 7: Examples of rail detection result from Sobel and Canny edge detections  
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Figure 8: Examples of rail detection result from U-Net model 
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Next, the preliminary test of the developed tram driving path identification system 

is performed. In this preliminary test, DeepLabV3plus model is selected for the rail 

detection module due to its high inference and speed performance.  
 

As previously mentioned, the images accumulated from the test track at Kashiwa 

campus of the University of Tokyo are utilized in this stage. Figure 9-10 demonstrate 

the original frame, rail detection results and preliminary test results of the system with 

both straight and curved tracks being tested. The rail track space and the boundary are 

indicated as green and red areas, respectively. 

 

 

Figure 9: Preliminary test result of the system: straight track 
 

 

Figure 10: Preliminary test result of the system: curved track with R = 33.3m 

 

From the preliminary test results as displayed in Figure 9-10, it is evident that the 

proposed tram driving path identification system can perform its assigned role very 

well, and the final results are genuinely impressive.  

 

4  Conclusions and Contributions 
 

To safely operate driverless trams, having the vision to perceive the surrounding is 

indispensable for the trams. Accordingly, the objective of this research is to introduce 
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an algorithm for identifying the tram driving path. In particular, the algorithm is built 

on the rail detection and the configured boundary generating modules. Successively, 

the comparison of different rail detection methods is conducted, and then the proposed 

tram driving path identification is preliminarily verified via the specific test dataset. 

Both comparative results and preliminary test are summarized as subsequent  

- The conventional methods, Sobel and Canny, did poorly work in rail detection, 

whereas the deep-learning models had incredible outcomes 

- The results clearly highlight a speed-accuracy trade-off of the deep learning 
based-rail detection models  

- The preliminary test results of the tram driving path identification system 

showcase the promising effectiveness of itself 
 

It could be concluded that the proposed system has the potential to facilitate the 

actual driverless tram services. Additionally, the future works of this research are  

- Other types of backbones, such as MobileNet and EfficientNet, are planned to 

be tested to help enhance the processing time of the rail detection module 

- Full evaluation process for the developed tram driving path identification 

system is important. It is planned to be accomplished with more railway scenes 

images. Meanwhile, accuracy and root mean square error (RMSE) will be 

included as significant metrics as well in this process 

- Testing the proposed identification system with real tram running experiments 

at test tracks is the next focus. This will allow us to gain a deep comprehension 

on how the system works in real time 

- A transition track, the radius of curvature of which is varied, will be considered 
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