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Abstract 
 

In this paper, we delve into the dynamics of an electromagnetically suspended mass 

from a rigid support. The study employs a 1.5-degrees-of-freedom system which 

serves as a simplified model for a Hyperloop vehicle traveling in a tube. Through 

linear stability analysis, we analytically uncover three distinct regions for the 

physically significant equilibrium point. Further inspection reveals that the system 

exhibits limit-cycle vibrations in one of these regions. Employing the harmonic 

balance method, we determine the properties of the limit cycle, thus unravelling the 

frequency and amplitude characterizing the periodic oscillations of system’s 

variables. We also present preliminary findings regarding the influence of the steady 

aeroelastic force on the stability of the system. 
 

Keywords: Hyperloop, electro-magnetic suspension, aeroelastic force, stability, 

supercritical Hopf bifurcation, harmonic balance, limit cycle. 
 

1  Introduction 
 

The Hyperloop is expected to revolutionize transportation, blending the advantages 

of aircraft and next-generation rail. This unique fusion yields a richer engineering 

landscape, presenting an open field for research. While the aeroelastic stability of 

aircrafts on the one hand and the stability of moving objects in direct (i.e., mechanical) 

contact with slender beams/rails on the other hand have been extensively studied, the 

realm of modern rail systems employing magnetic levitation at very high speeds 

remains largely unexplored. In the context of a Hyperloop vehicle traveling within a 
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depressurized tube, suspended or levitated electromagnetically from a flexible beam, 

the potential for integrating the aforementioned mechanisms arises. However, whether 

these stability mechanisms complement or counteract each other remains to be seen. 

Noteworthy previous literature pertaining to each individual mechanism is cited 

below. 

 

 

It is widely recognized that when a vehicle move along a flexible guideway, 

oscillations can become unstable if its speed exceeds a specific critical threshold  [1]. 

Metrikine [2] demonstrated that instability arises due to the energy associated with 

the radiation of anomalous Doppler waves, which feedback energy into the vehicle's 

vibration through the guideway’s reaction force, surpassing that of normal Doppler 

waves. Identifying such a critical velocity during the design phase is imperative  [3]. 

 

 

The primary aeroelastic effects that could impact a Hyperloop vehicle include 

galloping, fluttering, and vortex-induced vibrations [4,5], although they overlap to 

some extent. While studies on galloping and fluttering in railway systems exist, most 

listed studies are focused on detailed computational fluid dynamics analyses [6]. 

 

 

Moreover, several intriguing studies have delved into electromagnetic stability, 

some of which are referenced herein. Yabuno et al.  [7] investigated electromagnetic 

levitation under base excitation, representing one of the early works in this area, while 

Inoue et al. explored the same system with excitation on the mass, employing linear 

PD control [8]. The work represents another attempt to explore a very similar model, 

but for parametric instability. 

 

 

An initial exploration of the combination of the two potentially destabilizing 

forces, the beam’s reaction force and the electromagnetic force, was conducted by 

Fărăgău et al.  [9]. The study determined the stability region in terms of control 

parameters and the effect of the movement of the moving vehicle on it. The study also 

identified limit cycles in a specific region of the control parameter plane. The present 

work endeavours to analyse instability due to a combination of the electromagnetic 

and aeroelastic forces. A more simplified, 1.5-degrees-of-freedom system is used here 

(i.e., no flexible but rigid support), as it is analytically more tractable. The 

investigation focuses on the case in which the aeroelastic force creates an instability 

and the system thus undergoes galloping. The study derives closed-form expressions 

for the system’s response utilizing the harmonic balance method, to delineate stability 

boundaries and the presence of limit cycles. Validation of the results is performed 

through numerical integration using standard MATLAB packages. 

 

 

The paper is structured as follows: Section 2 presents the model, Section 3 conducts 

linear stability analysis and Section 4 explores the existence of the limit cycle. 
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2  Problem statement 
 

Figure 1 illustrates the considered model, representing a simplified model of a 

Hyperloop vehicle of mass m  suspended from a fixed support through the  

electromagnetic force F .  

 

 
 

Figure 1: Model of electromagnetically suspended mass subject to air flow. 

 

The equations of motion (EoM), which is Newton’s second law, and the equation for 

electric current that includes a voltage control (i.e., PD control) are defined as follows: 
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The system operates within a gravitational field, experiencing downward acceleration 

g  due to gravity. The desired fixed gap between the vehicle and support, denoted by 

0z , corresponds to one of the fixed points with respective steady-state voltage 0u  and 

current 0I  (see Section 3). The electromagnetic force ( )F t  between the support and 

vehicle depends on the displacement ( )z t  and current ( )I t  variables. The voltage 

controls the electromagnet (i.e.,  the current) to maintain the gap as constant as 

possible, with control parameters pK  and dK . C  is a constant determined by 

electromagnet properties. The destabilizing term z  in Eq. (1) represents the steady 

aeroelastic force, with   being the product of all aeroelastic constants. Here,   

denotes the relative angle between wind velocity V  and vertical component of the 
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vehicle velocity z ,   is the air density, A  is the vehicle’s cross-sectional area 

affected by wind, and ( ) ( ) ( )L DzC C C  = + , where ( )LC   denotes the lift 

coefficient and ( )DC   the drag coefficient. For galloping, a straightforward 

derivation of the destabilizing term z   is given in  [4]. While   is not a constant in 

real situations, the maximum oscillation amplitude of the vehicle, typically in the 

millimetre range, justifies the assumption due to minimal angle change of time. 

 

 

3  Linear stability analysis 
 

This section undertakes linear stability analysis of the system. The usual approach 

involves linearizing Eqs. (1) and (3), and deriving eigenvalues of the Jacobian matrix 

obtained from the linearized equation set at the desired fixed point. Initially, fixed 

points are determined by considering equilibrium or steady states. The equilibrium 

state, where all time derivatives are zero, is described by the following set of algebraic 

equations: 
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Solving Eq. (4) results in two fixed points: 
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For the second fixed point, either b

ssz  or 
2

b

ssI  must be negative, rendering it a 

nonphysical equilibrium point, especially for systems like the Hyperloop. Hence, for 

subsequent analyses, only the fixed point a a

ss 0 ss 0;  z z I I= =  is considered. 

 

The next step is to derive the linearized equations. Assuming perturbations around the 

variables as 0 tr ( )z z z t= +  and ( ) 0 tr ( )I t I I t= +  (the subscript “tr” denotes transient), 

and applying Taylor series expansions up to and including first order yields 

 

 
2

0 0
tr tr tr2 3

0 0

2
ss p0 d 0 0

tr tr tr tr

0

2 2

( 2 )

2 2 2

I I
mz C I C z

z z

z Kz R K z CI
I I z z

C C z C

= − +

+
= − + +

              (6) 



5 

 

 

The Jacobian of Eq. (6) at the fixed point-a is defined when Eq. (6) is written in state-

space form: 

 

( )

( )

( )

( )

( )

( )

tr tr2

0 0
tr tr3 2

0 0

tr tr

p 0 d 0 0 0 0

0 0

0 1 0

2 2
-

-
2 2 2

z t z t
CI CId

z t z t
dt mz m mz

I t I t
K z K z I u z

C C z CI



 
 
    
    
 =   
    
    
 + 
 

           (7) 

 

The characteristic polynomial of the Jacobian given in Eq. (7) is 
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The eigenvalues for each of the fixed points are shown in Figure 2 (i.e., also for fixed 

point-b). Stability transitions can be obtained from the zero crossings of the real parts 

of the eigenvalues. 

 

 

 

 
Figure 2: The eigenvalues for each of the fixed points are shown here, figures 1 and 

2 represent first and second fixed points, respectively. (a) and (b) represent real and 

imaginary parts of the eigenvalues, respectively. The small circles in 2 represent 

singularities. Here, 

( ) ( ) ( ) ( )2 2

d 010000 Vs/m ,  0.05 Nm /A ,  0.015 m ,  7650 kgK C z m= = = = . 
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Utilizing properties of cubic polynomials, the stability boundaries of the system can 

be determined. The discriminant of the polynomial suggests that the roots contain one 

real and two complex conjugates (not shown here). A stability transition requires at 

least one eigenvalue’s real part to be zero (sign change), suggesting two possibilities: 

the real part of the complex conjugates is zero, or the real root is zero. 

In the first scenario, for a polynomial 3 2 0a b c  + + + =  to have one real root and 

two purely imaginary roots, the relation ab c= −  is required, resulting in the first 

stability transition which is a straight line in the pK - dK plane (see Figure 3): 
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In the second scenario, the value c  will be zero since there will be only two roots, 

leading to the following condition, which is a vertical line in Figure 3: 
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The requirement for unconditional instability can be determined when the slope of Eq. 

(9) approaches infinity and coincides with the left vertical line in Figure 3: 
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In the limit where there is no influence of wind ( 0 = ), the stability boundary can be 

derived as: 
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Figure 3: Stability regions for the first fixed point in the pK - dK plane. The dashed 

line represents for the case of galloping. Here, 

( ) ( ) ( )2 2

00.05 Nm /A ,  0.015 m ,  7650 kgC z m= = =  

 
 

 

4  Existence of limit cycle for the case μ= 0  
 

The analysis now shifts its focus to the nonlinear dynamics aspects. It is evident from 

the stability analysis provided earlier that when the real part of the complex conjugates 

equals zero, the system conducts a harmonic motion (as soon as the motion related to 

the other root has decayed), typically indicating the presence of a limit cycle in the 

vicinity. This bears resemblance to the supercritical Hopf bifurcation, albeit typically 

defined for single-degree-of-freedom systems. We employ the harmonic balance 

method  [10] for this analysis. For simplicity, we truncate after the first harmonics and 

thus assume that 

 

 

 0 cos( )z z a t= +                       (13) 

0 cos( )I I b t= +                       (14) 

 

 

Substituting Eqs. (13) and (14) into (1) and (3), and solving the equation for ,a b and 

 , the following result is obtained: 
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Eq. (15)-(17) describe the limit cycle for 0 = . 

 

 
Figure 4. Comparison of numerical integration results and harmonic balance 

prediction for a limit cycle at 0 = . Here 

( ) ( ) ( ) ( ) ( )2 2

p d 027000 V/m , 10000 Vs/m ,  0.05 Nm /A ,  0.015 m ,  7650 kgK K C z m= = = = = . 

 

 

Results obtained from numerical integration and those from the harmonic balance 

method are compared in Figure 4. A small error is present due to the neglection of 

higher harmonics. For the existence of a limit cycle, , ,a b   must hold true. The 

condition derived from this turns out to coincide with the condition previously 

determined in Eq. (9). In other words, the limit cycle is born right when the fixed point 

becomes unstable (i.e., at the inclined red line in Figure 3). 
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5  Conclusion 
 

This study considers the dynamics of a 1.5-degree-of-freedom model consisting of an 

electromagnetically suspended mass that is excited by the steady aeroelastic force. 

The model is a simplified representation of a Hyperloop vehicle moving through air. 

The model allows to derive analytical expressions for stability boundaries by 

employing linear stability analysis. The results indicate that the control parameter 

space ( p dK K− ) is divided into three distinct regions, one of which exhibits limit cycle 

behaviour, akin to Hopf bifurcation. The presence of the destabilizing aeroelastic 

force leads to a marginal reduction in the stable region, with no qualitative changes in 

the stability landscape. Harmonic balance analysis identifies the region in the control 

parameter space where the limit cycle exists and provides the amplitudes and 

frequency for the limit cycle. Future endeavours will delve into examining the 

influence of the aeroelastic force on the characteristics of the limit cycle. 
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