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Abstract

Rail vehicle models have become increasingly complex, posing challenges in extract-
ing insights using traditional model representations as they require numerous itera-
tions to achieve a satisfactory solution. This complexity leads to high computational
and time costs and possibly resulting in inefficient vehicle design. To alleviate these
limitations, network models are proposed as an alternative representation in this paper.
These models enable the analysis of structure, behaviour, and patterns of interactions,
facilitating an understanding of knock-on effects across disciplines and subsystems.
The terminology, benefits, and capabilities of network theory in early-stage vehicle
design are presented in this paper, along with the aspects to consider and methods
for developing network models. The applicability of network theory metrics and al-
gorithms is demonstrated using a railway traction system example. Results indicate
that the proposed representations can capture complex system knock-on effects across
disciplines and subsystems.

Keywords: knock-on effects, early-stage design, rail vehicle design, network theory,
subsystem interactions, traction system.
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1 Introduction

The scope of sustainable vehicle design and development has evolved over the years.
From being associated mainly to tail-pipe emissions, it has evolved to include eco-
nomic, social, and environmental aspects. This evolution has gained significant trac-
tion in various industrial sectors, especially in the transport sector since the establish-
ment of the Sustainable Development Goals (SDGs) by the United Nations General
Assembly in 2015, and the Paris Agreement in 2016. The transport sector is responsi-
ble for 2% of the total transport energy consumption [1], contributes for approximately
25% of the total greenhouse gas (GHG) emissions [2, 3] and constitutes nearly 5 to
7% of the total GDP [4]. Moreover, the European Parliament, the Council and the
Commission jointly proclaimed transport sector as one of the essential services that
everyone has the right to access in the European Pillar of Social Rights [5]. Conse-
quently, the transport sector plays an pivotal role in achieving the Sustainable Devel-
opment Goals (SDGs). Thus, to achieve the SDGs, the sustainability aspect should be
integrated into all stages of vehicle development, spanning from concept development
and vehicle design to use-phase and end-of-life management.

Since railways are already among the most energy-efficient transportation modes
during operation, resources should be devoted towards improving other aspects of
rail vehicles development, including early-stage design, development, and modelling.
With conventional vehicle design approach, it is challenging to achieve a satisfactory
solution due to the lack of knowledge about the consequences of the design choices on
the overall vehicle attributes. This is because the conventional approach typically does
not consider interactions among the vehicle subsystems. This lack of consideration
further leads to increased number of iterations. To overcome these limitations, it is
vital to develop multi-disciplinary and holistic models that can accurately represent
the complex interactions within the vehicle system.

Such complex models are being utilised to optimise the design of different train
components [6–9] and to improve the vehicle dynamics using multi-body simula-
tions [10, 11]. However, while these models address the limitation of overlooking
interactions, they do not alleviate the issue of high computational and time costs. This
is because, with such complex models, there are a large number of parameters and
variables involved. Consequently, it becomes inherently difficult for the analysts to
capture the various indirect interaction effects (or knock-on effects) which result from
changes caused by other changes. Moreover, without gaining a fundamental under-
standing of the structure of the model and the manner in which the various factors
influence each other, performing any analysis might result in mere satisfactory solu-
tions despite consuming significant resources.

Therefore, to mitigate the computational and time costs while retaining the abil-
ity to analyse the complex indirect interaction effects, an alternate form of complex
model representation is necessary. A common approach to represent such complex
systems is through network theory. Representing such complex systems as network
graphs allows us to gain deeper insights about the structure, behaviour, and pattern
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of interactions within the model, facilitating an effective utilisation of the models and
eventually leading to an efficient vehicle design.

This paper presents a proposal for an alternate form of model representation and
an analysis of how this representation can be used to gain insights on the knock-
on/indirect interaction effects that can prove useful for a designer or an analyst during
the early design stages.

2 Network Theory: Premise and terminology

Network theory, a subset of graph theory, is a branch of mathematics and computer
science that studies complex systems by representing them as graphs. Mathematically,
a graph is defined as a pair G = (V,E) of sets wherein E ⊆ [V ]2 [12]. In other words,
a graph G is defined as a finite set of vertices V (or nodes or points) and edges E (or
links) where each edge is connected to two vertices. The vertices represent the discrete
elements (i.e. variables, parameters, components, subsystems) and the edges represent
the relationship between these elements. Generally, the networks are represented as
matrices using either adjacency matrices or incidence matrices.

Depending on the relationships captured in the matrices, the models can be repre-
sented as different types of graphs as depicted in Figure 1. They can be represented
either as simple graphs or multi-graphs depending on the number of edges between
two nodes and the existence of self-loops. They can be directed or undirected graphs,
depending on whether the edges have a specified direction. They can be weighted
or unweighted graphs, depending on whether there are weights assigned to the edges.
Additionally, they can be bipartite graphs in which the vertices can be divided into two
disjoint and independent sets U and V . In such graphs, every edge e ∈ E connects a
vertex in U to a vertex in V and thus, the graph is defined G as G = (U, V,E).

Representing complex system models as graphs provides various benefits. Fore-
most, it provides an intuitive means of visualising the connections among different
parameters, variables, components, and subsystems. Furthermore, as graphs are gen-
erally expressed as matrices, it provides access to a wide array of matrix operations
and tools that can be employed to manipulate graphs. Moreover, the graphical rep-
resentation provides access to various metrics within graph theory such as centrality,
density, eccentricity, etc., which can be utilised to analyse the structure, pattern, and
behaviour of interactions.

These capabilities of network theory facilitated its applications in various fields,
from neuroscience and psychology to transport planning, including engineering de-
sign [13]. In engineering design, however, network theory has predominantly been
used to improve product and process architecture [14, 15] and develop modular prod-
ucts [16]. Moreover, there are only limited studies which integrate network theory as a
tool in the early stages of vehicle design [17]. where it has a potential to address some
of the limitations of the conventional vehicle design approach mentioned in Section 1.
Particularly, its oversight of interactions among components and the challenges of the
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Figure 1: Types of graphs in network theory

traditional representation of complex multi-disciplinary and holistic models, which
often require high computational and temporal resources. Moreover, it can assist de-
signers in understanding the consequences of their design choices, their influence on
the overall vehicle performance, and in deriving design spaces for different subsys-
tems.

This article demonstrates the approach to developing network models of complex
systems and the manner in which these models can be utilised to understand the indi-
rect interaction effects. Specifically, a network model is developed for a rail vehicle
traction system, including a 3-phase squirrel cage induction motor, an inverter model,
and a drive cycle coupled together. Since the traction motor is a vital part of the ve-
hicle and incorporates various significant disciplines, it serves as a good example of
a complex multi-disciplinary model. Furthermore, since the traction motor and the
inverter are coupled with a model of the operational drive cycle, it provides a holistic
perspective, illustrating the influence of transport and system level requirements over
subsystem and component level design.

The manner in which the motor, inverter, and the drive cycle are coupled is depicted
in Figure 2. Initially, the necessary input parameters from the motor model are derived
from the drive cycle. These parameters are then utilised to design the traction motor.
Subsequently, the information from the motor such as its current, voltage, torque, and
speed are utilised to calculate the power losses in the inverter. A more detailed account
of the dependencies between inverter and the traction motor, and the different steps
involved in the design of the traction motor are provided in [18, 19].

4



Figure 2: Overall procedure for traction system model

3 Building a network model

In this section, the procedure to develop the network model and the aspects to consider
while developing it are described. In this paper, an adjacency matrix is used to repre-
sent the network model. Adjacency matrix An×n is a square matrix of size n×n where
n is the number of vertices in the graph G. It captures the information on whether two
nodes (vi and vj) are adjacent, or in other words if two nodes are connected by an
edge. The diagonal elements of the adjacency matrix are usually zero unless the graph
contains self-loops. A simple adjacency matrix An×n of the graph G can be defined
using Equation 1.

aij =

{
1 if vivj ∈ E,

0 otherwise.
(1)

Subsequently, all the nodes within the model are identified. These nodes become
the rows and columns of the adjacency matrix. However, before constructing the
adjacency matrix, it is vital to consider various aspects about the model, including:

• The complexity of the model, which indicates the number of nodes in the adja-
cency matrix.

• The nature of information flow, which indicates whether the network graph is di-
rected on undirected based on whether the relationship is causal or bi-directional
respectively.
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• The existence of cycles and self-loops, which indicates whether the network
graph is acyclic.

• The dynamics of the nodes, which indicates whether the network graph is static
or dynamic based on whether the relationship among the nodes are static or
temporal.

These aspects influence the type of network model that represents the identified
traction system model. Furthermore, they facilitate understanding and verifying the
structure of the adjacency matrix. The complexity of the model indicates the size of
the adjacency matrix. The nature of information flow indicates whether the adjacency
matrix is symmetric or asymmetric. The existence of cycles and self-loops denote
determines whether the adjacency matrix is an upper triangular matrix. It is worth
mentioning that there has been considerable research on temporal networks, especially
in sociology [20] and transport systems [21]. However, there are limited studies which
utilise static networks in early stage vehicle design to analyse the relationships among
the factors, within and across subsystems and their influence on the overall vehicle
attributes.

Therefore, in this paper, an analytical model of the traction system which includes
motor, inverter, and drive-cycle is utilised to develop a network model. The different
variables and parameters of the traction system model’s equations are represented as
nodes and the relationship between the variables and parameters are represented as
edges. The developed analytical model of the traction system has no cycles or self-
loops. This is because the traction motor design is developed based on the provided
drive cycle and there is no feedback involved in the model. This indicates that the
information flow is unidirectional and acyclic, representing the traction system as a
Directed Acyclic Graph (DAG). Moreover, since this is an analytical model, the re-
lationships between the different nodes (or factors) are predetermined. Therefore, a
simple unweighted adjacency matrix can be constructed with the already available
information on the relationship between the different nodes.

However, in case of an empirical or numerical models, the data needs to be pro-
cessed using certain algorithms to identify the dependencies between different factors
of interest. One approach is to utilise Local Sensitivity Analysis (LSA) or Global Sen-
sitivity Analysis (GSA) to analyse the sensitivity of the input factors over the different
factors and construct the adjacency matrix based on the sensitivity indices. There
are also dimensionality reduction techniques that allow to identify the most important
factors among all the factors of interest and thus, reducing the number of nodes in the
network model. For dynamic systems, there are algorithms such as Sparse identifica-
tion of Nonlinear Dynamics (SiNDy) that allows to identify the underlying governing
equations of the dynamic systems which can further be utilised to understand the de-
pendencies between different factors of interest.

Once all the nodes and their relationships are identified, they can be used to con-
struct the adjacency matrix where the factors (or parameters or variables) of the model
are represented as the rows and columns of the matrix. As indicated in Equation 1,
if node i influences node j, then the corresponding cell ai,j of the adjacency matrix
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An×n has a value of 1, otherwise it has a value of 0. This procedure is followed
for every node pair of the adjacency matrix. The constructed adjacency matrix then
represents the relationships captured in the traction system model. Thus, the con-
structed adjacency matrix is then used to develop the network model of the traction
system model using the digraph function in MATLAB. The resulting network graph
is depicted in Figure 3. These nodes represent the geometrical, electrical, magnetic,
electro-magnetic, and thermal parameters which determines the design of the traction
motor.

Figure 3: Network representation of the traction system model

However, it is evident from Figure 3 that the network representation of complex
models can become quite cumbersome. Thus, it is necessary to utilise the metrics of
network theory to gain meaningful insights about the model.

4 Analysis of traction system through network metrics
and algorithms: A case study

In this section, the capabilities and applicability of various metrics and algorithms
within network theory are discussed and exemplified with a railway traction system
example. These metrics can be utilised to analyse the structure, behaviour, and pattern
of interactions within model. Furthermore, they facilitate the understanding of indirect
(or knock-on) interaction effects within the model.
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At the node level, measures such as degree centrality provide insights on how well a
node is connected to other nodes based on its direct connections. This information can
be used to understand the most influential and most influenced nodes. The measure
closeness centrality indicates the proximity of a node to all the other nodes in the
network based on the average shortest distance between the nodes. This information
can be utilised to identify nodes that can be modified to swiftly spread the change
within the network. Thus, these metrics can provide information on the manner in
which different nodes are connected, or in other words, the structure of the network.

At network level, algorithms such as Breadth-First search (BFS), Depth-First search
(DFS), and Dijkstra’s algorithm can provide information about the manner in which
the information flows in the network. BFS is used to identify the shortest path be-
tween the source node and all other nodes connected to the source node. Starting at
the source node, BFS identifies all the nodes connected to the source node. Then, it
systematically identifies all nodes connected to the nodes at the current depth level
before moving to the next depth level. Thus, if the goal is to identify all the direct and
indirect interaction effects caused by modifying a given input, BFS is utilised. How-
ever, if the goal is to identify all the direct and indirect interactions that are caused
to influence a given output, then BFS needs to be executed in reverse. This algo-
rithm is termed as Reverse Breadth-First Search (RBFS) in this paper. The algorithm
of RBFS works in a similar fashion as BFS except now the target node becomes the
source node and instead of identifying the successors of the given node, the algorithm
identifies the predecessors of the node. In contrast to BFS and RBFS, DFS explores
one branch completely before backtracking to the source node and then continues to
explore the next branch. DFS is commonly used to identify cycles and self-loops in
the network.

Dijkstra’s algorithm [22] is commonly used to find the shortest path from a source
node to all other nodes in a non-negative weighted directed graph. It builds on the
principles of BFS, but it iteratively selects the node with the shortest distance from
the source node. The algorithm ensures that all nodes that are reachable by the source
node are visited. Thus, Dijkstra’s algorithm identifies the shortest paths from the
source nodes to all other nodes reachable by the source node. If the goal is to identify
the most direct (or shortest) path to influence an output with a given input, Dijkstra’s
algorithm is utilised. These algorithms therefore, serve different purpose based on the
intent of the analysts. Thus, before utilising these algorithms, the analyst must clarify
the insights that the analyst wishes to obtain. To exemplify these algorithms, the
traction system with the induction motor, inverter, and the drive cycle is considered.

To exemplify these algorithms, the traction system with the induction motor, in-
verter, and the drive cycle represented in Figure 3 is considered. In this case study, if
the input factor of the motor model, required rated power Prated, which is derived from
the drive cycle, is modified, then, all the factors that are influenced by this change can
be identified using BFS as depicted in Figure 4. To identify all the factors that are
modified to influence the output, mass of the motor mmotor, RBFS is utilised and the
result is depicted in Figure 5.
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Figure 4: Breadth-First Search of motor input

Figure 5: Reverse Breadth-First Search of motor output

These metrics and algorithms can prove instrumental from a design perspective, as
they help the designer to focus on the influential parameters while pruning the non-
influential parameter branches from the analysis. Thus, reducing the complexity of the
analysis. Furthermore, they help in identifying all the parameters and variables that
are modified by modifying the input factor. This helps the designer understand the
consequences of modifying a factor and also keep track of the changes that occur in
different subsystems. It can even help in deriving feasible design spaces of the input
factors.

Moreover, these algorithms can be used to identify the path of influence between
two subsystems. For example, it is assumed in this paper that the inverter design is
based on the motor design, and the inputs to the inverter from the motor are known.
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Using BFS, the path of influence from the the motor input to the parameters and vari-
ables in the inverter can be identified. This is achieved by assigning the stator current
value Isx as the source node for the BFS and the result is depicted in Figure 6a. Thus,
the designer can identify not only the factors influenced by the change but also the
change propagation’s path.

Additionally, Dijkstra’s algorithm can be used to identify the most direct path of
influence without considering the knock-on effects. For example, the direct path be-
tween the input Prated and the output mmotor identified using Dijkstra’s algorithm
is depicted in Figure 6b. However, it must be noted that although Dijkstra’s algo-
rithm can be utilised for unweighted or equally-weighted graphs, it is more efficient
to utilise BFS for such graphs due to simplicity. Moreover, the time complexity of
BFS is O(V + E), and for Dijkstra’s algorithm, it is O((V + E)logV ). Therefore, in
general, for equally weighted or unweighted graphs, it is efficient to use BFS.

(a) BFS of inverter and motor coupling factors (b) Shortest path of motor input and output

Figure 6: BFS and Dijkstra’s algorithm application to motor network model

5 Possible analysis expansions

It can be noted from Figure 4 and Figure 5 that while analysing the knock-on effects,
there are a large number of factors that are involved. Consequently, there are a large
number of paths that connect these input factors and output factors. However, all paths
do not have similar influence on the outputs. There can be situations where only few
paths have a major influence while rest of the paths have no influence at all. Identi-
fying these influential paths can further reduce the complexity of the network models.
Therefore, to identify these influential paths, a combination of Local Sensitivity Anal-
ysis (LSA) and Global Sensitivity Analysis (GSA) methods shall be performed in the
future. These methods provide sensitivity indices which indicate the most influential
input parameters for a given combination of inputs and outputs. This would allow
the designer to focus only on the influential paths. Moreover, by assigning sensitiv-
ity indices between factors as edge weights, Dijkstra’s algorithm can be utilised more
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efficiently.
Furthermore, the present network model of the traction system shall be expanded

to include other subsystems such as pantograph, frictional and regenerative brakes,
gearbox design and wheel geometries. This expansion is possible due to the presence
of factors that couple two subsystems. In the traction system example, the factors
motor current Isx and voltage Em couple the motor and the inverter designs. Similarly,
there are coupling factors between different subsystems as depicted in Figure 7. These
coupling factors are then utilised to expand the network model. This expansion can
be achieved by utilising multilayered networks where each layer is a subsystem and
the coupling factors act as the edge between two layers. Integrating other subsystem
in the developed network model will enable to gain holistic insights about the vehicle.
This will further help in facilitating effective utilisation of resources and developing
efficient vehicle designs.

Figure 7: Future expansion of network model with different subsystems and their cou-
pling factors

6 Summary

In this paper, an alternate form of representing complex models is presented and its
applications were demonstrated. Initially, the terminology required to understand the
concepts of network theory were provided. A brief account on the different forms
of graphs and the manner in which they are represented was provided. The various
benefits of representing complex systems via network theory, the capabilities of net-
work theory, and its application in various fields were discussed. It was identified that
although network theory has been predominantly utilised in vehicle development in
areas such as product and process architecture. However, the utilisation of network
theory within early stage vehicle design is limited. The benefits of utilising network
theory at this phase were explained. A complex traction system model was introduced
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to exemplify the applications and benefits of utilising network theory in early stage
vehicle design.

Further, an introduction to adjacency matrix is given, which is the matrix repre-
sentation of network model. The different factors that need to be considered while
developing the network model and their impact on the network model type were also
discussed. The different approaches and algorithms that can be utilised to construct
the adjacency matrix of analytical, empirical, and numerical models were discussed.
A brief account on the procedure followed to develop the adjacency matrix, and se-
quentially, the network model of the traction system analytical model was provided.

The necessity and the benefits of utilising metrics and algorithms on the devel-
oped network model were discussed. The different metrics of network theory includ-
ing, degree centrality and closeness centrality, and their significance in identifying the
knock-on effects in traction system model were discussed. The established traversal
algorithms such as Breadth-First Search, Depth-First Search, and Dijkstra’s algorithm,
their principle, capabilities, and significance in identifying the knock-on effects were
discussed. The Reverse-Breadth-First Search (RBFS) algorithm developed in this pa-
per to identify knock-on effects for a specific output was introduced. The capabilities
of these algorithms were demonstrated using the traction system model.

It is observed that BFS is more useful to identify the knock-on effects of modifying
an input, RBFS is useful for identifying all the factors that are modified to influence
a given output, and Dijkstra’s algorithm is useful for identifying the shortest path
between two factors, and it is especially efficient when dealing with non-negative
weighted directed graphs. Thus, the proposed network representation was able to
identify knock-on effects in the traction system model.

However, while exemplifying using BFS and RBFS, it was observed that there are a
large number of factors and paths involved that might not have a significant impact on
the outputs. Therefore, it was mentioned that, in the future, a combination of Local and
Global Sensitivity Analysis shall be performed to filter out these non-influential fac-
tors and paths. Furthermore, other subsystems and components (pantograph, brakes,
gearbox, and wheels) shall be integrated into the proposed network model to expand
the knowledge that can be gained about the vehicle model. This will further translate
into effective utilisation of resources and efficient vehicle design.
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