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Abstract

We investigate the influence of random variables selection on spatial variation of rail
material parameters and shape dimensions to the expected value and the standard de-
viation of the simulated track dynamic response. The spatial variation is considered
about Young’s modulus, density, cross-sectional area, moment of inertia and surface
profile on a rail, using the Karhunen-Loève expansion. The random variables in the
Karhunen-Loève expansion are chosen from the standard normal- or the standard log-
normal random variables. The dynamic response in a probability space is evaluated
using the polynomial chaos and the stochastic collocation method Through numerical
tests, we investigate the expected value and the standard deviation of the three kinds of
dynamic forces, the wheel-rail contact force, the railpad force and the sleeper-ballast
force for several running speed of a wheel. The expected value and the standard devia-
tion of the wheel-rail contact force increase with rise of the wheel running speed c, due
to existance of rail surface profile. The dynamic behavior on the expected value and
the standard deviation tends to be independent of the choice of the standard normal-
or the standard log-normal random variables in Karhunen-Loève expansion.

Keywords: wheel-track vibration, spatial variation, material parameters and shape di-
mensions, Karhunen-Loeve expansion, log-normal random variable, polynomial chaos.
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1 Introduction

A railway track is comprised of rail, sleeper, railpad, ballast, subballast and subgrade.
The train passing on such a track is accompanied by wheel-track vibration, which
leads to a track deterioration and train safety reduction. In a few decade, many sim-
ulation methods for wheel-track vibration have been proposed by e.g. [1, 2]. Most of
the presented studies are based on the deterministic FE-based simulation, while the
members have certain spatial variation on their material parameters and shape dimen-
sions. [3–7]. The spatial variation in the input information propagates as uncertainties
of the dynamic response in railway track. We thus requires the stochastic vibration
analysis of railway track, for the progression of railway track design.

As the presented studies on the stochastic track vibration analysis, Andersen et
al [8] have attempted to the vibration analysis on a track with elastic foundation with
spatial varitation. Bressolette et al [9] have investigated the influence of the variation
of elastic modulus and the thickness of a ballast layer to the static/dynamic response
of a track. Rhayma et al [10] have simulated the dynamic response of a ballst track
with the uncertainties of depths of ballast layer and subgrade. Sadri et al [11] have
estimated the initiation and progression of track deterioration of a track with spatial
variation of support stiffness. Nowadays, the authors have attemped the track vibration
in consideration of spatial variation of ballast elastic modulus [12]. In the paper [13],
we have considered the spatial variation of ballast elastic modulusand density in a
stochastic analysis on track vibration. Moreover, we have investigated the influence
of spatial variation of rail material parameters and shape dimensions to the dynamic
response of track components [14]. In the ref. [14], the Karhunen-Loève expansions
on rail uncertainties are defined using the standard normal random variables: the non-
Gaussian type spatial variation of material parameters and shape dimensions of rail
has not been considered in the stochastic simulation.

In the present paper, we investigate the influence of random variables selection
on spatial variation of rail material parameters and shape dimensions to the expected
value and the standard deviation of the simulated track dynamic response. The well
known beam-mass-spring system [2] is used as the wheel-track vibration model. The
spatial variation is considered about Young’s modulus, density, cross-sectional area,
moment of inertia and surface profile on a rail. The Karhunen-Loève (KL) expan-
sion [15] is used for modeling the spatial variation of 4 rail parameters and the rail
surface profile. We consider a choice of the random variables in the KL expansion,
the standard normal- or the standard log-normal random variables. The dynamic re-
sponse in a probability space is evaluated using the polynomial chaos (PC) [15] and
the stochastic collocation method [16]. We now investigate the influence of a choice
of random variables on spatial variation of rail material parameters and shape dimen-
sions, to the expected value and the standard deviation of the similated results on
wheel-rail contact force, railpad force and sleeper-ballast force.
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2 Wheel-Track Vibration Model

In the present study, the wheel-track vibration phenomena is modeled as shown in
Figure 1 [2]. A rail is modeled as a single, uniform and straight Bernoulli-Euler beam.

Figure 1: wheel-track vibration model.

The single beam is discretely supported by sleepers. The variational form of vertical
motion of the rail is described as∫ L

0

Er(x)Ir(x)
∂2ur

∂x2
(x, t)

∂2δur

∂x2
(x)dx+

∫ L

0

ρr(x)Ar(x)
∂2u

∂t2
(x, t)δur(x)dx

=

Nwh∑
j=1

δur(xj + ct)Pj(t)−
Nslp∑
j=1

δur(aj)Fj(t),

(1)

where ur(x, t) is the rail deflection and δur(x) is its variational components. Er is
rail Young’s modulus, and ρr is the rail density. Ir and Ar are the moment of inertia
and the area of rail cross-section, respectively. x is the longitudinal coorinate and t is
the time. The railpad force Fj(t) acting at the sleeper support x = aj is consequently
modeled as a concentrated load.

The wheel-rail contact force Pj(t), which is a moving concentrated load with the
constant running speed c, is defined as

Pj(t) = kc(uwh,j(t)− ur(xj + ct, t) +X(xj + ct)), (j = 1, 2, . . . , Nwh) (2)

where kc is the spring constant of contact. X(xj + ct) is the surface profile at the
contact point x = xj + ct.

The wheels are modeled as unsprung masses, and the equations of their vertical
motions are expressed as follows:

mwh,i
∂2uwh,i

∂t2
(t) = Pb,i +mwh,ig − Pi(t), (i = 1, 2, . . . , Nwh) (3)

where uwh,i(t) is the vertical displacement of the ith wheel with the mass mwh,i. Pb,i

is a dead load.
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The railpad force Fj(t) is modeled with a Voigt unit as

Fj(t) = krp(ur,j(aj, t)−uslp,j(t))+ ηrp(u̇r,j(aj, t)− u̇slp,j(t)), (j = 1, 2, . . . , Nslp)
(4)

where krp and ηrp are the spring constant and the damping coefficients of the railpads.
The vertical displacement uslp,j(t) on the jth sleeper with mass mslp,i is governed

by the following equation of motions:

mslp,i
∂2uslp,i

∂t2
(t) = Frp,i(t) +mslp,ig − Fs,i(t), (i = 1, 2, . . . , Nslp). (5)

The ith sleeper reaction force Fs,i(t) is described as

Fs,i(t) = ks(uslp,i(t)−ub,i(t))+ ηs(u̇slp,i(t)− u̇b,i(t)), (i = 1, 2, . . . , Nslp) (6)

where ub,i is the vertical displacement of ballast surface.

3 Simulation method for railway track vibration with
spatial variation of rail material parameters and shape
dimensions

In the present study, we consider spatial variation of 5 material parameters and shape
dimensions of a rail: Young’s modulus, density, cross-sectional area, moment of in-
ertia and surface profile. The spatial variation of these parameters is described with
Karhunen-Loève (KL) expansion. The dynamic response in a probability space is ap-
proximated with the polynomial chaos (PC) expansion. The PC expansion coefficients
of dynamic response are then calculated using the deterministic simulation results and
the stochastic collocation method.

3.1 Modeling of spatial variation of rail material parameters and
shape dimensions

The spatial variation of Young’s modulus Er(x), the density ρr(x), the cross sectional
area Ar(x), the moment of inertia Ir(x) and the rail surface profile X(x) are defined
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with KL expansions [15] as

Er(x) = Ēr(x) +

NKL∑
m=1

ξE,m

√
λE,mfE,m(x) (7)

ρr(x) = ρ̄r(x) +

NKL∑
m=1

ξρ,m
√

λρ,mfρ,m(x) (8)

Ar(x) = Ār(x) +

NKL∑
m=1

ξA,m

√
λA,mfA,m(x) (9)

Ir(x) = Īr(x) +

NKL∑
m=1

ξI,m
√
λI,mfI,m(x) (10)

X(x) = X̄(x) +

NKL∑
m=1

ξX,m

√
λX,mfX,m(x) (11)

where λ∗,m and f∗,m are the eigenvalue and the eigenfunction of the covariance kernel
C(x; y) on spatial variation, respectively. An expected value is described with ¯. NKL

is the number of terms in the truncated KL expansion.
ξE,m, ξρ,m, ξA,m, ξI,m and ξX,m are standard normal random variables. If we choose

standard log-normal random variables in Eqs.(7)-(11), we have to transform the ran-
dom variables ξ∗,m to into new variables η∗,m as

η∗,m =
eξ∗,m −

√
e√

e(e− 1)
. (12)

The log-normal random variables η∗,m have the orthogonality as [17]

⟨η∗,i⟩ = 0, ⟨η∗,iη∗,j⟩ = δij, (13)

where ⟨ · ⟩ denotes the expectation operator, and δij is the Kronecker delta.

3.2 Stochastic collocation method

In the presented papers, the railway dynamic response in a probability space have
been simulated using Monte Carlo Simulation(MCS) or the spectral stochastic finite
element method (SSFEM) [12]. The simulation with these methods requires large
computational work, which is drawback for stochastic simulation with many random
variables on wheel-track dynamics.

We now utilize the stochastic collocation method (SCM) [16] for evaluating the
response of dynamic force in probability space. The SCM is based on the approxi-
mation in probability space with the polynomial chaos (PC) expansion [15]. The PC
expansion coefficients can be calculated using the deterministic simulation results and
least squares method.
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We first express the spatial variation on material parameters and shape dimensions
of several members of a railway track as Eqs. (7)-(11). The random numbers ξ(j) =
{ξ(j)E , ξ

(j)
ρ , ξ

(j)
A , ξ

(j)
I , ξ

(j)
X } are introduced as

ξ
(j)
E = {ξ(i)E,k| k = 1, 2, . . . , NKL}, ξ(j)ρ = {ξ(i)ρ,k| k = 1, 2, . . . , NKL},

ξ
(j)
A = {ξ(i)A,k| k = 1, 2, . . . , NKL}, ξ

(j)
I = {ξ(i)I,k| k = 1, 2, . . . , NKL},

ξ
(j)
X = {ξ(i)X,k| k = 1, 2, . . . , NKL},

(14)

where j = 1, 2, . . . Nsim. The jth random numbers in Eq.(14) correspond to the jth
rail material parameters E

(j)
r (x), ρ(j)r (x) and shape dimensions A

(j)
r (x), I(j)r (x) by

Eqns.(7)-(11). Then all parameters and dimensions are deterministic. The jth wheel-
rail contact force P (j)

i (t) (i = 1, 2, . . . , Nwh), railpad force F (j)
r,i (t) (i = 1, 2, . . . , Nslp)

and sleeper-ballast force F (j)
s,i (t) (i = 1, 2, . . . , Nslp) can be calculated using the FEM.

We next approximate the dynamic forces Pi, Fr,i and Fs,i with the Polynomial
Chaos(PC) expansion as

Pi(t, ξ) =

NPC∑
j=1

Pi,j(t)Φj(ξ),

Fr,i(t, ξ) =

NPC∑
j=1

Fr,i,j(t)Φj(ξ),

Fs,i(t, ξ) =

NPC∑
j=1

Fs,i,j(t)Φj(ξ),

(15)

where Pi,j , Fr,i,j and Fs,i,j are the expansion coefficients on Pi, Fr,i and Fs,i, respec-
tively. Φj (j = 1, 2, . . . , NPC) is the polynomial chaos (PC), and is given by Hermite
polynomials for normal random variables [15].

The PC expansion coefficients in Eq.(15) are defined as the solutions of the follow-
ing linear algebraic equations by the least squares method:

NPC∑
β=1

Nsim∑
m=1

Φα(ξ
(m))Φβ(ξ

(m))Pi,β(t) =

Nsim∑
m=1

Pi(t, ξ
(m))Φα(ξ

(m)) (16)

NPC∑
β=1

Nsim∑
m=1

Φα(ξ
(m))Φβ(ξ

(m))Fr,i,β(t) =

Nsim∑
m=1

Fr,i(t, ξ
(m))Φα(ξ

(m)) (17)

NPC∑
β=1

Nsim∑
m=1

Φα(ξ
(m))Φβ(ξ

(m))Fs,i,β(t) =

Nsim∑
m=1

Fs,i(t, ξ
(m))Φα(ξ

(m)) (18)

where α = 1, 2, . . . , NPC .
The expected values P̄i, F̄r,i and F̄s,i and the standard deviations σPi

, σFr,i
and σFs,i
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Table 1: Expected value of the material parameters and shape dimensions of a rail.

Ēr 210 (GPa)
Īr 3090× 10−8 (m4)
ρ̄r 7850 (kg/m3)
Ār 77.50× 10−4 (m2)
X̄ 0 (mm)

of the dynamic response Pi(t), Fr,i(t) and Fs,i(t) are evaluated as follows:

P̄i(t) = Pi,1(t), σ2
Pi
(t) =

NPC∑
m=2

P 2
i,m(t), (19)

F̄r,i(t) = Fr,i,1(t), σ2
Fr,i

(t) =

NPC∑
m=2

F 2
r,i,m(t), (20)

F̄s,i(t) = Fs,i,1(t), σ2
Fs,i

(t) =

NPC∑
m=2

F 2
s,i,m(t), (21)

In the present study, we apply Eqs.(15)-(21) to the simulation results at every time-
marching step.

4 Influence of random variable selection on spatial vari-
ation of rail parameters to the dynamic response of
railway track

In the present section, we investigate the influence of random variable selection on
spatial variation of rail parameters to the dynamic response of a railway track, through
numerical tests.

4.1 Problem description

We now simulate the vibration phenomena of the railway track with 11 sleepers and
0.56m sleeper spacing. The rail in the track is given by JIS 60kg rail. Table 1 shows the
expected value of material parameters and shape dimensions of rail. The covariance
kernel C(x; y) on the spatial variation of rail parameters is defined as

C(x; y) = σ2 exp

[
−|x− y|

b

]
(22)

where σ and b are standard deviations and correlation lengths on spatial variation. x
and y are longitudinal coordinates of the rail. The eigenvalue λ and the eigenfunction
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f are calculated by the following equation:∫
Ω

C(x; ξ)f(x)dΩx = λf(ξ) (23)

where Ω is a domain of a rail.
The spatial variation of Young’s modulus Er, the density ρr, the cross-sectional

area Ar, the moment of inertia Ir and the surface profile X has 0.15mm correlation
length. The standard deviations of Er, ρr, Ar and Ir are prescribed to 10% of the ex-
pected value of these parameters, The standard deviation of the rail surface profile is
0.1mm. We now classify 5 material parameters and shape dimensions into 2 groups:
(i) Young’ modulus Er(x) and density ρr(x) and (ii) cross-sectional area Ar(x), mo-
ment of inertia Ir(x) and rail surface profile X(x). We assume that the two or three
parameters in an every group are perfect correlation, and that the parameters in the dif-
ferent groups (e.g. the relation between Er(x) and Ar(x)) are mutually independent.
The number of terms in the truncated KL expansion is prescribed into NKL = 5. The
1st-order polynomial chaos is used for approximation of dynamic response in a proba-
bility space. The number of terms in the PC expansion is then NPC = 1+5× 2 = 11.
The sample number Nsim on the stochastic collocation method is set into 200.

In the present vibration analysis, the unsprung mass is mwh = 900kg, and the dead
load is Pb = 45.57kN. A wheel starts from the point of x = 1.12m, and runs at
c = 30m/s (108km/h), 50m/s (180km/h), 70m/s (252km/h) or 90m/s (324km/h)on a
rail. The rail pad in the present simulation has 50MN/m spring constant and 98kN
sec/m damping coefficients. The sleeper mass is 130kg. In voigt units on the sleeper-
ballast force, a spring constant is 84MN/m and a damping coefficients is 98kN sec/m.

4.2 Wheel-rail contact force

Figure 2 illustrates the expected value and the standard deviation of the wheel-rail con-
tact force at each wheel position x. The wheel-rail contact force follows the normal- or
the log-normal distribution because the 1st-order polynomial chaos is used for approx-
imation in a probability space. The amplitude of the expected value of the wheel-rail
contact force increases with speed-up of wheel running. The amplitude for 30m/sec
is about 4kN, while the one for 90m/sec is more than 10kN. The standard deviation
shows about 5% value of the expected value in initial stage of the wheel running due to
transient response, and subsequentially decreases to about 1% of the expected value.
A higher speed on wheel running leads to a larger standard deviation: the one for
c = 90m/sec shows 20% value of the expected value. The dynamic behavior on the
expected value and the standard deviation tends to be independent of the choice of the
standard normal- or the standard log-normal random variables in KL expansion.

4.3 Railpad force

Figure 3 illustrates the expected value and the standard deviation of No.6 railpad force
Frp,6 at each wheel position x. The railpad force is defined as the rail-sleeper force.
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(a) c = 30m/sec.
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(b) c = 50m/sec.
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(c) c = 70m/sec.
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(d) c = 90m/sec.

Figure 2: Expected value and the standard deviation of the wheel-rail contact force P1

at each wheel position x.

The No.6 sleeper locates the center of the model track with 11 sleepers. The railpad
force follows the normal- or the log-normal distribution because the 1st-order poly-
nomial chaos is used for approximation in a probability space. The maximum of the
expected value of the railpad force tends to increase with rise of the wheel running
speed c. The maximum force for c = 90m/sec shows the 110% of the maximum for
the lowest speed c = 30m/sec in the present simulation. The standard deviation of the
railpad force also rises with wheel speed increase. While the standard deviation for
c = 30m/sec is about 5% of the expected value of Frp,6, the one for 90m/s amplifies to
25% of the expected value. The choice of the random variables in KL expansion have
no effect on this tendency.
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(a) c = 30m/sec.
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(b) c = 50m/sec.
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(c) c = 70m/sec.
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(d) c = 90m/sec.

Figure 3: Expected value and the standard deviation of the No.6 railpad force Frp,6 at
each wheel position x.

4.4 Sleeper-ballast force

Figure 4 illustrates the expected value and the standard deviation of the wheel-rail
contact force on the No.6 sleeper at each wheel position x. The sleeper-ballast force
follows the normal- or the log-normal distribution because the 1st-order polynomial
chaos is used for approximation in a probability space. The dynamic behavior of the
expected value and the standard deviation of the sleeper-ballast force shows shimi-
lar tendency of the railpad force. The simulation results for the standard log-normal
random variables in KL expansion is similar to those for the standard normal random
variables.
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(b) c = 50m/sec.
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(c) c = 70m/sec.
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Figure 4: Expected value and the standard deviation of the No.6 sleeper-ballast force
Fs,6 at each wheel position x.

5 Concluding remarks

In the present paper, we have investigated the influence of random variables selection
on spatial variation of rail material parameters and shape dimensions to the expected
value and the standard deviation of the simulated track dynamic response. The well
known beam-mass-spring system [2] was used as the wheel-track vibration model.
The spatial variation was considered about Young’s modulus, density, cross-sectional
area, moment of inertia and surface profile on a rail. The Karhunen-Loève (KL) ex-
pansion was used for modeling the spatial variation of these rail parameters. We have
considered a choice of the random variables in the KL expansion, the standard normal-
and the standard log-normal random variables. The dynamic response in probability
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space is evaluated using the polynomial chaos (PC) and the stochastic collocation
method.

In our simulation, we investigate the expected value and the standard deviation of
the three kinds of dynamic forces, the wheel-rail contact force, the railpad force and
the sleeper-ballast force for several running speed (30, 50, 70 and 90 m/sec) of a wheel.
The expected value and the standard deviation of the wheel-rail contact force increase
with rise of the wheel running speed c, due to existance of rail surface profile. The
standard deviation for c = 90 m/sec shows 20% of the expected value. The standard
deviations of the railpad force and the sleeper-ballast force clearly rise from 5% of the
expected values of them for c = 30 m/sec to about 25% for c = 90 m/sec.

The dynamic behavior on the expected value and the standard deviation tends to be
independent of the choice of the standard normal- or the standard log-normal random
variables in KL expansion.
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