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Abstract
This paper presents a semi-analytical method for evaluation of the wave energy ra-
diated from a tunnel in bogie-track-tunnel-soil interaction problems. Due to the pe-
riodicity of the sleeper spacing, the interaction problem is reduced to that in a unit
cell. The solution is derived with the aid of the Floquet transformation. The trans-
formed solution is expressed by Fourier series in the track direction. Waves caused
by both the railhead random roughness and the parametric excitation are considered.
The former is evaluated within the framework of the mathematical expectation, while
the latter is calculated deterministically. The wave energy passing through a virtual
cylindrical boundary immersed in the soil region is evaluated for three types of track
structure. The first one is the direct fixation track. The second one is the track with
under-sleeper pads. The third one is the direct fixation track with an under-slab sheet.
Although performance of the under-slab sheet is superior to that of the under-sleeper
pad at around 40 Hz, these are equivalent above 60 Hz. The frequency dependence
of the directivity of radiated waves is almost the same for both responses due to the
railhead roughness and the parametric excitation.
Keywords: 3-D analysis, periodic track, random roughness, mathematical expecta-
tion, parametric excitation, directivity of radiated waves
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1 Introduction

Ground-borne vibration induced by a train running in a tunnel may affect the sur-
rounding residential environments. In taking measures to reduce the vibration, it is
neccessary to assess the vibration level of the tunnel and soil in advance. For this
purpose, different numerical evaluation methods have been developed.

In order to simulate the dynamic reaction due to moving loads, three-dimensional
modelling of the tunnel-soil subsystem is desired. If the tunnel can be modelled as
a cylindrical structure with uniform cross section, by virtue of the Fourier transfor-
mation with respect to the tunnel longitudinal direction, the coupling problem can be
reduced to a two-dimensional problem [1, 2]. However, consideration of the track
periodicity is essential to evaluation of the parametric excitation due to the interaction
between a moving wheel and a discretely supported rail. Application of the Floquet
transformation enables to reduce such periodic structure to a unit cell representing its
periodicity [3, 4, 5, 6].

An analysis method based on the Floquet transformation has also been developed
in reference [7]. In that paper, to reduce the computational effort, the interaction
problem is divided into two sub-problems consisting of the wheel-track and the track-
tunnel-soil subsystems. In the latter, the moving contact force between the wheel and
the rail is replaced with a stationary harmonic load. This simplification contributes to
saving the computation time, while the dynamic effect of the moving load cannot be
considered precisely [8]. Furthermore, the vibration reaction resulting from a random
roughness on the railhead is evaluated by smoothing the response over each 1/3 octave
frequency band. Although this process makes it possible to approximate the average
of random vibration, a reduction in frequency resolution might be unavoidable.

A semi-analytical method for bogie-track-tunnel-soil dynamic interaction problems
taking into account the uncertainty in railhead roughness has been developed in refer-
ence [9]. In that method the mathematical expectation of the energy spectrum density
of acceleration at observation points inside the tunnel is derived explicitly.

Although estimation of the vibration level at the tunnel is important, it will also be
worth while to investigate the wave propagation characteristics in the ground which is
radiated from the tunnel. This paper presents a semi-analytical method for evaluation
of the transmission of wave energy passing through a virtual boundary immersed in
the soil region far from the tunnel. The bogie-track-tunnel-soil interaction is calcu-
lated using the semi-analytic solution derived in reference [9]. The wave transmission
originating from the parametric excitation is calculated deterministically, while that
resulting from a random roughness is evaluated in the sense of the mathematical ex-
pectation. Through numerical analyses, directivity of the radiated waves and effect of
the vibration reduction measures such as installation of the under-sleeper pad and the
under-slab sheet on the wave radiation are investigated.
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Figure 1: Bogie-track-tunnel-soil interaction problem considered in this study; (a) the
bogie-track subsystem; (b) the tunnel-soil subsystem.

2 Outline of the mathematical model [9, 10]

A bogie-track-tunnel-soil interaction problem illustrated in Figure 1 is considered. A
two-axle bogie is running with a speed of V on an infinite track. A continuous welded
rail is supported by sleepers with a regular spacing L. The rail is modelled as a Tim-
oshenko beam. The railhead roughness r is defined as a stationary random process.
The rail pad and under-sleeper pad are given by springs kr and ks, respectively. In the
frequency-domain analysis these are described as complex stiffnesses. The sleepers
and wheelsets are modelled by point masses of Ms and Mw, while the bogie frame is
represented by a rigid body of mass MB and moment of inertia IB. Stiffness of the
primary suspension is kB. The wheelbase is xw. The weight of car body is considered
as a static load Q. Its consideration is essential to simulation of the parametric exci-
tation. Contact stiffness between the wheel and the rail is modelled by a linear spring
kw.

A single-track shield tunnel is modelled as Figure 1(b). The concrete slab and the
tunnel invert are given by viscoelastic bodies. The concrete lining is modelled as a
cylindrical shell. The soil region is represented by an infinite homogeneous elastody-
namic field.

3 Semi-analytic solution

In this section outline of the developed analysis method is described.
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3.1 Derivation of solution for random railhead roughness

In order to solve the present problem, the Floquet transformation is applied to the
solution. The Floquet transform [3,4] of a function f(x) with a length L is defined by

f̃(x̃, κ) :=
∞∑

n=−∞

f(x̃+ nL)einκL,

(
−L
2
≤ x̃ ≤ L

2
, 0 ≤ κ ≤ 2π

L

)
, (1)

where f̃ is the Floquet transform of f and κ is a parameter called Floquet wavenumber.
Inverse Floquet transform is given by

f(x̃+ nL) =
L

2π

∫ 2π/L

0

f̃(x̃, κ)e−inκL dκ, (n ∈ Z). (2)

In this study the Floquet transform of rail deflection ˜̂u(x̃, ω, κ) is expressed in a
Fourier series as [9, 10],

˜̂u(x̃, ω, κ) =
∑
n

un(ω, κ)e
−iκnx̃, κn :=

2nπ

L
+ κ, (3)

where ω stands for the circular frequency and un is the Fourier coefficient. Other terms
such as the wheel/rail contact force and wheel vertical motion are also expressed in
similar forms. un is given by

un(ω, κ) =
∑
m

unm

[
f1m

(
κ− ω

V

)
+ f2m

(
κ− ω

V

)
eiκmxw

]
,

unm :=
1

V Xn

(
δnm − 1

Xm

· 1
1
ke

+
∑

l
1
Xl

)
,

Xn := GAKκ2n − ρAω2 − (GAKκn)
2

GAK − ρIω2 + EIκ2n
,

(4)

where f1m and f2m are Fourier coefficients of the wheel/rail contact forces at the rear
and front wheels, respectively. δnm stands for the Kronecker delta. G,K,E and ρ
are shear modulus, shear factor, modulus of elasticity and density of the rail. A is
the cross-sectional area and I is the geometrical moment of inertia. ke is the dynamic
equivalent stiffness representing the sleeper-tunnel-soil subsystem and expressed as

ke(ω, κ) = kr
kskT − (ks + kT )Msω

2

kskT + (ks + kT )(kr −Msω2)
, (5)

where kT (ω, κ) is the dynamic equivalent stiffness corresponding to the slab-tunnel-
soil substructure. The concrete slab and tunnel invert are discretized with finite el-
ements in the tunnel section (y − z plane), while in the tunnel direction the Fourier
series is applied. Derivation of kT was described in reference [7].
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In this analysis the interaction problem is reduced to the infinite linear equations of
the Fourier coefficients of wheel/rail contact forces as [9, 10](

1

kw
− µ1n

)
f1n − µ2nf2n +

∑
m

Anm(0)f1m +
∑
m

Anm

(xw
V

)
f2me

iκmxw

= rn − γn(µ1n + µ2n)Qn,

− µ2nf1n +

(
1

kw
− µ1n

)
f2n +

[∑
m

Anm

(
−xw
V

)
f1n

+
∑
m

Anm(0)f2me
iκmxw

]
e−iκnxw = rne

−iκnxw − γn(µ1n + µ2n)Qn,

Anm(α, κ) :=
1

2π

∫ ∞

−∞
unm

(
ω, κ+

ω

V

)
eiαω dω,

(6)

where µjn and γn are coefficients relevant to the bogie motion and rn is the coefficient
of railhead roughness.

Matrix notation of Equation (6) is given by

[A(κ)]{f(κ)} = [B(κ)]{r(κ)} − [C(κ)]{Q(κ)}, (7)

where {f} is a vector composed of f1n and f2n, [A] is a matrix corresponding to the
left-hand side of Equation (6), {r} is a vector composed of rn, [B] and [C] are matrices
given by the first and the second terms on the right-hand side respectively, and {Q} is
a vector corresponding to the static load Q; Q0 = 2π/LQδ̃(κ), Qn = 0(n ̸= 0), here
δ̃ is the periodic delta function with periodicity of 2π/L.

From Equation (7), we can obtain the frequency response of rail deflection û as
[9, 10]

û(x̃, ω) =
L

2π

∫ 2π/L

0

[αT (x̃, ω, κ)]
{
r
(
κ− ω

V

)}
dκ−Qβ(x̃, ω),

[αT ] :=
[
TT (x̃, ω, κ)A−1B

(
κ− ω

V

)]
,

β := γ0(0)[µ10(0) + µ20(0)]
[
TT
(
x̃, ω,

ω

V

)
A−1(0)I0

]
,

(8)

where the vector {T} is composed of
∑

m unme
−iκx̃ and

∑
m unme

−iκx̃−xw , and com-
ponents of the vector {I0} are given by unity when these correspond to f10 and f20.

The Floquet transforms of displacement ˜̂uG and traction ˜̂pG due to the random
roughness evaluated on the boundary immersed in the soil region are described as

˜̂uG(ω, κ) = ˜̂u0G[α
′T (x̃, ω, κ)]

{
r
(
κ− ω

V

)}
,

˜̂pG(ω, κ) = ˜̂p0G[α
′T (x̃, ω, κ)]

{
r
(
κ− ω

V

)}
,

{α′} := kc{α}, kc :=
kTkskr

kskT + (ks + kT )(kr −Msω2)
,

(9)
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where ˜̂u0G and ˜̂p0G are the Floquet transforms of the displacement and traction on the
evaluation boundary due to a unit harmonic loading on the slab. The soil displacement
˜̂u0G is expressed by [7, 11]

˜̂u0G = ∇ϕ+∇× {ψex + ℓ∇× (χex)}, (10)

where ex is the unit vector in the direction of x, ℓ is of arbitrary length. ϕ, ψ and χ are
expressed as follows in cylindrical coordinate system:

g =
∑
n,m

anm(κ)H(2)
m (knr)e

imθe−iκnx̃, k2n =
ω2

C2
− κ2n, (11)

where g is either function of ϕ, ψ and χ, anm is an expansion coefficient, and H(2)
m is the

m-th order Hankel function of the second kind. C is either speed of the longitudinal
wave CL and the transversal wave CT , and given by CL for g = ϕ and CT for g = ψ
or χ.

Substituting Equation (11) into Equation (10), the soil displacement and traction
can be given by

˜̂u0G =
∑
n,m

[Unm]{Φnm}eimθe−iκnx̃, ˜̂p0G =
∑
n,m

[Snm]{Φnm}eimθe−iκnx̃, (12)

where the vector {Φnm} is composed of ϕnm, ψnm and χnm, [Unm] and [Snm] are 3×3
matrices.

Inner product of the displacement and traction can be obtained by way of the in-
verse Floquet transformation as

û∗
G · p̂G =

(
L

2π

)2 ∫∫ 2π/L

0

˜̂u∗
0G · ˜̂p0G[α

′∗]
{
r̄
(
κ− ω

V

)} [
rT
(
ζ − ω

V

)]
{α′} dκdζ,

(13)
where (·)∗ and (̄ ) stand for conjugate transpose and complex conjugate, respectively.

3.2 Mathematical expectation of transmitted wave energy

From Equation (13), the mathematical expectation of û∗
G · p̂G is derived as

E(û∗
G · p̂G) =

1

2π

∫ 2π/L

0

˜̂u∗
0G · ˜̂p0G

∑
n

Sr

(
κn −

ω

V

)
|α′

n|2 dκ, (14)

where E(·) stands for the mathematical expectation, Sr is the power spectrum density
(PSD) of the railhead roughness. The expectation value of wave energy per unit angle
transmitted through a cylindrical evaluation boundary immersed in the soil region
with radius R from the tunnel center and unit length in x direction is approximately
evaluated as follows:

E(eT1) ≈
Rω

2
Im(E(û∗

G · p̂G)), (15)
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where eT1 is the transmitted wave energy arisen from the random roughness and Im(c)
stands for the imaginary part of a complex number c. The displacement and traction
on the boundary are evaluated at x̃ = 0.

The transmitted wave energy due to the parametric excitation eT2 can be obtained
deterministically by

eT2 ≈
Rω

2
Q2|kcβ|2Im(˜̂u∗

0G(ω, 0) · ˜̂p0G(ω, 0)). (16)

4 Results

In this study three types of track structure are considered. The first one is the direct
fixation track, in which sleepers are fixed on the concrete slab and any vibration re-
duction measures are not taken. The second one is the track with under-sleeper pads.
The third one is the direct fixation track with an under-slab sheet, in which a microcel-
lular polyurethane elastomer sheet is placed between the concrete slab and the invert.
UIC60 is assumed for the rail. kr = 83 MN/m and ks = 7 MN/m for the track with
under-sleeper pad and kr = 30 MN/m for other cases. The dynamic stiffness of the
sheet is 7.5 MN/m3. The damping of these materials is considered by a loss factor of
0.2. The mass of sleeper Ms is 100 kg per rail and the sleeper spacing L is 0.6 m.

Inner radius and thickness of the tunnel lining are 3.25 m and 0.25 m. Its damping
is represented by a loss factor 0.1. The soil density is 2200 kg/m3, and CL = 412 m/s
and CT = 220 m/s.

Parameters relevant to the bogie are MB = 1500 kg, IB = 500 kgm2, Mw = 1000
kg, xw = 2.1 m and Q = 100 kN. The contact stiffness kw is set to 1.5 GN/m. In the
following, results for V = 20 m/s are shown.

4.1 Transmitted wave energy due to random roughness

The following PSD is considered for the railhead roughness:

Sr(k) =
S0

k4
, (17)

where k is the wavenumber and S0 = 4.5× 10−7 1/m [10].
The expectation of the transmitted wave energy per unit angle E(eT1) is shown

in Figure 2 for 40 and 60 Hz. Since the far-field solution given by taking the limit of
R → ∞ cannot be obtained explicitly, E(eT1) is evaluated on the cylindrical boundary
of radius R = 100 m. Notice that this value can be a good approximation of the far-
filed wave radiation.

Although the transmitted wave energy for the track with under-sleeper pad is com-
parable to that for the direct fixation track at 40 Hz, its remarkable reduction is
achieved at 60 Hz. The lowest dominant frequency of the track with under-sleeper
pad is about 40 Hz which is characterized by the resonance of wheel-track coupling
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Figure 2: Expectation of transmitted wave energy per unit angle E(eT1) resulting from
railhead roughness; (a) 40 Hz; (b) 60 Hz.

system. On the other hand, that of the track with under-slab sheet is about 20 Hz
which corresponds to the natural frequency of a mass-spring system consisting of the
slab and sheet. Therefore, the vibration reduction of the latter track is achieved above
20 Hz.

It is obvious that, regardless of track structure, most of the wave energy is radiated
downward. The wave energy propagating to upward has rather clear directivity. The
main radiation directions are 60° at 40 Hz and 30° at 60 Hz.

4.2 Transmitted wave energy due to parametric excitation

The transmitted wave energy due to the parametric excitation eT2 is shown in Figure 3.
The dominant frequencies are the sleeper passing frequency of V/L = 33.3̇ Hz and its
higher harmonic frequencies. However, due to the Doppler effect, the main frequency
response splits into two peaks [9]. Because of this, in Figure 3 results at peaks of 34
Hz and 68 Hz, which are slightly higher than V/L and 2V/L, are shown. The radiated
wave energy of the track with under-sleeper pad is the largest of the three tracks at 34
Hz, while its vibration reduction performance is comparable to that of the track with
under-slab sheet at 68 Hz. The frequency dependence of the directivity of radiated
waves is similar to that of waves caused by the railhead roughness. It can be found
that, as far as these frequencies are concerned, the wave energy observed at far field is
dominated by vibrations originating from the parametric excitation.
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Figure 3: Transmitted wave energy per unit angle eT2 resulting from parametric exci-
tation; (a) 34 Hz; (b) 68 Hz.

5 Conclusions

Evaluation of the transmitted wave energy passing through a boundary immersed in
the far-field soil region was attempted for the bogie-track-tunnel-soil interaction prob-
lems. To achieve this, a semi-analytical method has been developed with a combina-
tion of the Floquet transformation and the Fourier series in the track direction. Waves
arisen from both the railhead random roughness and the parametric excitation were
considered. The former was evaluated in the sense of the mathematical expectation.
On the other hand, the latter was calculated deterministically.

Three track structures of the direct fixation track, the track with under-sleeper pad
and that with under-slab sheet were compared in terms of vibration reduction. Al-
though performance of the under-slab sheet is superior to that of the under-sleeper
pad at around 40 Hz, these are equivalent above 60 Hz. The wave energy propagating
to upward has rather clear directivity. The frequency dependence of the directivity of
radiated waves is almost the same for both responses due to the railhead roughness and
the parametric excitation. The radiated wave energy can be dominated by vibrations
originating from the parametric excitation at around the sleeper passing frequency and
its higher harmonic frequencies.
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