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Abstract 
 

For the further improving the railway safety, we are developing a train forward 

surveillance method using cameras and sensors. In train forward surveillance, it is 

important to detect obstacles entering the tracks at a distance. Therefore, we 

investigated the combination of images obtained from cameras and point cloud data 

obtained from LiDAR as a suitable senser configuration for the railway environment. 

In our proposed method, the detection area is set by predicting the area of the rail track 

from the image, and objects such as people and automobiles are recognized using the 

deep learning. In addition, by combining detection using point cloud data, we can 

avoid missing objects even in conditions where recognition from images is difficult, 

such as at nighttime. 
 

Keywords: train forward surveillance, camera, LiDAR, deep learning, point cloud 

processing, sensor fusion 
 

1  Introduction 
 

To further improve railway safety, it is important to reduce the risk of contact 

accidents between trains and obstacles on the tracks. If obstacles on the tracks can be 

detected by a forward monitoring system that assists the driver, contact accidents can 

be avoided and damage can be mitigated. In the automobile industry, the development 

of Advanced Driver Assistance Systems (ADAS) has been progressing, and these 

systems have been introduced in mass-market vehicles. On the other hand, in the case 

of railways, the coefficient of friction between the railway wheels and the track is low, 
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and it takes a greater distance from the detection of an obstacle to the stopping point 

than for a car traveling at the same speed. Currently in Japan, the requirements for 

sensor technology necessary to detect obstructions from a distance far enough away 

to allow trains to slow down or stop have not been established. Therefore, we are 

developing an obstacle detection method to detect objects at a distance using a camera 

and a sensor, aiming to establish the requirements for application to train forward 

surveillance. This paper first describes the results of the sensor configuration based 

on the current status of collisions between trains and obstructions and the 

characteristics of the sensors. Next, an overall view of the obstacle detection method 

is presented. Finally, the result of the verification of the detection performance of the 

proposed method is shown.  
 

2  Background 
 

2.1 Accidental contact between train and obstacles 
 

In order to understand the current status of contact accidents between trains and 

obstacles in Japan, we compiled data on past accidents. Specifically, among the 

accident information stored in the “Railway Safety Database” [1] published by 

Railway Technical Research Institute, we analysed accidents caused by contact 

between trains and obstacles and cases that led to significant delays (8,343 cases in 

total) over the past 20 years. 

 

 Figure 1 shows the breakdown of obstacles in the total number of cases. More than 

half of the cases involved contact with persons entering the railway tracks. Other than 

people, most cases involve contact with automobiles and motorcycles, and there are 

also cases of contact with fallen trees, gravel and avalanches.  
 

Figure 2 shows the number of accidents by time of day. In most rail lines, trains 

operate from 5:00 to midnight the next day, and there is no significant difference in 

the number of incidents between day and night during this time period. 

 

 
 

Figure 1: Breakdown of collisions between trains and obstacles by type of obstacles. 
 

 

Person

57%

Automobiles/Motorcycles, 

42%

Falling 

rocks/trees/avalanches

0.30%

others

0.84%



3 

 

  

 
 

Figure 2: Number of collisions by time of day. 
 
 

 

 
 

 

 
 

 

 

2.2 Characteristics of sensors used for obstacle detection 
 

Table 1 summarizes the characteristics of four typical sensors (visible light camera, 

LiDAR, millimetre wave radar) that are mainly used in automotive ADAS.  
 

A visible light camera is a sensor that records visible light reflected from an object 

onto an imaging element. During the daytime, the camera can capture objects with 

high resolution in the distance, but at night or under other conditions where 

illumination is not available, it becomes difficult to see the image of the object. In 

addition, it is difficult for a camera alone to capture the distance to an object or its 

shape in three dimensions. 
 

 LiDAR (Light Detection and Ranging) is a sensor that emits near-infrared light 

(light with a wavelength of approximately 900~1,000 nm), measures the distance to 

an object from the time it takes to return to the light receiving surface, and acquires a 

set of distance information as point cloud data. It can capture the shape of an object 

in three dimensions, and its performance is independent of illumination. On the other 

hand, since point cloud data only contains information on the distance to the object 

and the reflectance of the laser, it is difficult to identify the class of object unless the 

reflectance is different from that of the surroundings. 
 

Millimetre wave radar is a sensor that uses millimetre wave reflections to make 

measurements. Depending on the bandwidth, it can detect the presence or absence of 

objects with high resolution, but it is difficult to determine the detailed shape of 

objects at a distance. 
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Sensor 
Time 

zone 

Object 

identification 
Resolution 3D measurement 

Visible light 

camera 

Day 

Identifiable by 

colour and 

contour Order a few 

centimetres 

Impossible due 

to the principle 

of the sensor 
Night 

Depends on 

ambient 

illumination 

LiDAR 

Day Only objects 

with differences 

in reflectance 

can be identified 

Order a few 

centimetres 
Possible 

Night 

Millimetre 

wave radar 

Day Only objects 

with differences 

in reflectance 

can be identified 

Orders from a 

few centimetres 

to several tens of 

centimetres 

Difficult to 

measure in detail 
Night 

 

Table 1: Characteristics of the main sensors 
 
 

 

 
 

3  Investigation of sensor configuration suitable for obstacle 

detection 
 

Based on the current status of contact accidents between trains and obstructions 

presented in Section 2.1, the following two requirements for obstacle detection were 

defined.  
 

Requirement 1: It is possible to identify that a person, vehicle, or other object has 

entered the railway tracks. 
 

Requirement 2: It is possible to detect targets during both daytime and nighttime. 
 

Based on the characteristics of the sensors described in Section 2.2, we examined 

sensor configurations that satisfy the above requirements. To satisfy requirement 1, 

the sensor must be able to correctly recognize the inside and outside of a railway track 

and the type of obstacles. Also, to satisfy requirement 2, the sensor must be able to 

detect obstacles independent of illumination. Requirement 1 can basically be satisfied 

by using images from a visible light camera and object detection by machine learning. 

However, as mentioned above, the camera alone cannot clearly capture the image of 

an object in low-light conditions, so it is necessary to cover the weak point of the 

camera by using it in combination with other sensors in order to satisfy requirement 2 

as well. In this study, we decided to investigate a sensor configuration that combines 

LiDAR as a sensor that can correctly grasp the shape of an object up to a distance. 
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4  Obstacle detection method 
 

4.1 Overview of proposed method 
 

The overview image of the obstacle detection algorithm using cameras and LiDAR is 

shown in Figure 3. The data obtained from the sensor in front of the train includes 

objects that should not be detected as obstacles, such as people on the platform, for 

example. To exclude such objects, a detection area is set around the train tracks at 

first. Next, targets are detected using both images and point cloud data. The detection 

results are judged to be inside or outside the detection range, and an alert is issued 

only when the target is within the detection range. Of these, the detection range setting 

method is described in Section 4.2, and the object detection method by camera-

LiDAR fusion is described in detail in Section 4.3, as the main technical elements. 
 

 
 

Figure 3: Overview of obstacle detection algorithm 
 

 

4.2  Detection area setting from images. 
 

The detection area is set toward the direction in which the train is moving in the area 

around the tracks in the front image. First, an image of the detection area setting is 

shown in Figure 4. Specifically, the regions of rail track are extracted by PIDNet [2], 

a deep learning method that predicts regions from an image in pixel units. Next, 

multiple horizontal lines are set in the image and the intersection points of each 

horizontal line with the extracted rail region are obtained. The approximate gauge at 

each horizontal line can be determined by giving the position of the vanishing point 

of the rail in the image and the width of the rail at the bottom edge of the image as 

parameters. From this, the points of rails at the intersection of each horizontal line that 

are close to the length of the gauge are extracted as the left and right rail pair. By 

connecting pairs belonging to the same rail area, starting from the bottom edge of the 

image, the detection range can be configured in the direction of moving. In addition 

to the inside of the rail, a certain amount of space (clearance gauge) must be 

maintained in the outside direction as an area where the object must not intrude. Since 

the width of the building limit is fixed according to the width of the rail (for example, 

the width of the clearance gauge is 3,800 mm on a conventional rail line with a gauge 

of 1,067 mm in Japan), this information is used to set the detection area by expanding 

the extracted rail area to the left or right by the amount of the clearance gauge. 
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 An example of the application of the proposed method to an image in the dataset 

of train forward images (RailSem19[3]) is shown in Figure 5. The pink circles on the 

rails represent the extracted left and right rail pairs. It can be seen that the detection 

range can be set along the direction of the line regardless of weather conditions. 

Furthermore, even at locations where turnouts exist, the detection range can be set 

smoothly toward the direction where the turnouts are open. 
 

 
 

Figure 4: Image of the detection area setting. 
 

 

 
 

Figure 5: The example of detection area setting. 
 

 

4.3 Obstacle detection by camera-LiDAR fusion 
 

After setting the detection area, objects are detected from each of the camera image 

data and LiDAR point cloud data, and the results are fused. In order to combine the 

detection results of both sensors, the coordinate system of each sensor must be aligned 

through prior calibration. Let (𝑢, 𝑣) be the coordinate system with the center of the 

camera image as the origin and (𝑋𝐿 , 𝑌𝐿 , 𝑍𝐿) be the coordinate system with the light-
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receiving surface of LiDAR as the origin, the relationship between the two is 

expressed by the following equation,  
 

 (
𝑢
𝑣
1

) = 𝐊[𝐑, 𝐓] (

𝑋𝐿

𝑌𝐿

𝑍𝐿

1

) (1) 

 

where 𝐊 is the intrinsic parameters of the camera and 𝐑, 𝐓 are the extrinsic parameter 

(rotation matrix and translation vector) between the camera and LiDAR coordinate 

system. Once the intrinsic parameters are obtained in advance, extrinsic parameters 

can be estimated by the PnP algorithm, which minimizes the distance between the 

image and the corresponding points in the point cloud, given multiple combinations 

of points. Once the correct extrinsic parameters are obtained, the point cloud data can 

be projected onto the image, as shown in Figure 6. In Figure 6, the projected points 

are coloured according to distance (red for near areas and blue for far areas), indicating 

that red points are projected on the track surface in front of the sensor and on grass 

and trees along the track. 
 

 
 

Figure 6: The result of projection of point cloud into image. 
 

On the assumption that the sensors are properly calibrated with each other, 

detection results from point clouds can be projected into detection results from images 

to achieve highly robust detection. An image of the integration of detection results is 

shown in Figure 7. From the image, the position, size, and type of the object are 

simultaneously predicted by using YOLOX [4], a deep learning method used in object 

detection. In the output layer of the deep learning model, an array (feature map) 

containing the following information is obtained for each grid that divides the image 

evenly. 
 

(1) Probability of objectness 𝑝𝑜𝑏𝑗 (0 ≤ 𝑝𝑜𝑏𝑗 ≤ 1) 
 

(2) Class of object 
 

(3) probability of determining class 𝑝𝑐𝑙𝑎𝑠𝑠 (0 ≤ 𝑝𝑐𝑙𝑎𝑠𝑠 ≤ 1) 

 



8 

 

(4) Coordinates and size of objects in the image 
 

From the point cloud data, the area corresponding to the rail track is removed from 

the image, and the process of extracting three-dimensional objects above the rail track 

is applied. To remove the track area, RANSAC [5], an algorithm that estimates the 

plane from the 3D point cloud, is applied to the point cloud data projected onto the 

detection area in Section 4.2. Since the extracted point cloud data includes noise 

caused by ambient light, etc., DBSCAN [6], a density-based clustering process that 

extracts regions of high density of point clouds as a single chunk, is applied. 
 

 Finally, the results of clustering are projected onto the image and fusion processing 

is executed. Since it can be said that an object almost certainly exists at the location 

where the cluster exists, the value of the feature map corresponding to the location 

where the centre of the cluster is projected is referenced, and the value of objectness  

𝑝𝑜𝑏𝑗 is set to 1. For the class of object, if the class determination probability 𝑝𝑐𝑙𝑎𝑠𝑠 

determined from the image at the projected location exceeds a certain threshold value, 

the value predicted from the image is adopted; otherwise, the “Unknown” is 

considered. In the image in Figure 7, the value of objectness at the centre of the person 

detected in the image is 0.7 in the image alone, but by projecting the cluster centre 

coordinates of the point cloud, the value is updated to 1, indicating a higher probability 

of objectness. 
 

 

 

 
 

Figure 7: The image of object detection from images and point cloud. 
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5  Performance evaluation of the proposed method 
 

5.1 Summary of the evaluation experiment 
 

To evaluate the detection performance of the detection algorithm at each distance, a 

stationary test was conducted on a test road where a straight section of 600 m was 

available. To simulate the situation where the sensors are installed in front of an actual 

vehicle, a sensor unit (a camera and nine LiDARs) and two headlights were installed 

on the back of a truck, as shown in Figure 8. In the sensor unit, nine LiDARs were 

lined up vertically and horizontally with a spacing of approximately 1 cm. The 

distance between the headlights was 1.7 m. During the experiment, the data was 

repeatedly recorded and moved in a fixed position for 10 seconds from a point 50 m 

away from the subject to a point 600 m away from the subject. As subjects, we targeted 

people dressed differently, as shown in Figure 9. 
 

 

 
 

Figure 8: Equipment configuration at the time of the experiment. 
 

 
 

 
 

Figure 9: Examples of subjects. 
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5.2 The result of the experiment 
 

For the data acquired at each location, the detection rate was calculated for each 

distance as the percentage of the data that correctly predicted the presence of an object 

where it should be located. We used the result of annotating the image in advance as 

the correct value of the object's position and defined “detection” as when the 

percentage of overlap (IoU) between the correct position and the detected position 

exceeds a certain value. 
 

 Figure 10 shows examples of detection results for a person 300 m away, both 

during the (a) daytime and at (b) nighttime. The left side shows the result of using 

only the camera and the right side shows the result of combining the camera and 

LiDAR. Although detection using only image information is difficult at night due to 

the reduced illumination, the detection became possible by combining information 

from point cloud data. 
 

 

 
 

Figure 10: Detection result for a person 300m away. 
 

To investigate the relationship between the density of laser points emitted by 

LiDARs and detection performance, point cloud data for 𝑁(𝑁 = 1, 2, … ,9) LiDARs  

were processed to obtain detection rates. The relationship between the number of 

LiDAR and the detection rate at each distance is shown in Figure 11. The figure shows 

a correlation between the number of LiDARs used for detection (density of laser 

points) and the detection rate at each location. When detection processing was 

performed using all the LiDARs in the sensor unit, it was found that a person could 

be detected up to 400 m away with a detection rate of more than 90%. Furthermore, 

based on this relationship, the detection rate was estimated assuming a further increase 

in the number of LiDAR, and it was predicted that a person could be detected up to 

500 m away when the number of LiDAR was increased to 14 units. Table 2 shows the 

relationship between the number of LiDAR used in the experiment and the number 

 
(a) Daytime 

 
(b) Nighttime 
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(density) of points irradiated per m2 per 0.1 second at 500 m away. From this, it was 

found that, for example, to correctly detect a person at 500 m away, the sensor unit 

should be configured so that the density of laser points per 0.1 second is 25 points / 
m2.Currently, a larger number of LiDARs results in a larger sensor unit, but if the 

density of laser points obtained from a LiDAR increases with further improvements 

in sensor technology in the future, it should be possible to achieve detection with the 

same accuracy with a more compact sensor configuration. 
 

 
 

Figure 11: The relationship between LiDAR number and detection rate. 
 

 

Number of LiDAR 1 3 6 9 14 

Number of laser point 

(/0.1s, 1m2) 
1.8 5.3 11 16 25 

 

Table 2: The relationship between the number of LiDAR and number of laser point. 
 

 

6  Conclusion 
 

This paper describes efforts to develop an obstacle detection method using cameras 

and sensors for train front surveillance. We investigated accident cases and sensor 

characteristics in Japan, and based on both perspectives, showed that cameras and 

LiDAR are suitable sensor configurations for detection. We developed a method for 

setting the detection area based on the rail track predicted from the image, and it was 

confirmed that the detection area can be set correctly along the direction of moving. 

We also developed a detection method that combines the results of object detection 
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from images with the results of clustering on point cloud, and confirmed that it can 

correctly detect people both day and night in the performance evaluation in stationary 

conditions. Furthermore, we confirmed the trend that the detection rate improves as 

the number of sensors comprising the sensor unit is increased, indicating the 

possibility of further improvement in detection performance with an increase in 

LiDAR laser density. In the future, we plan to conduct a similar detection performance 

evaluation under conditions similar to the actual railway environment. 
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