

1

Abstract

Model-driven development is a widely used approach in various domains, and its

popularity has been increasing in certain industries. Refactoring software models is

essential to maintain and enhance the quality of software models. This paper focuses

on refactoring an existing software model to achieve resource-sharing problems with

the help of a spin-lock mechanism. Threads accessing the same resource might create

problems if they read and write simultaneously. Locking is unnecessary if the shared

resource is only read by all threads. Most of the time, the reading operation does not

exist alone in the software projects, and the writing operation comes along with the

reading operation. Problems arise when none of the synchronization mechanisms are

used. In this work, we have worked on Unified Modeling Language diagrams to inject

a spin-lock synchronization mechanism. For this purpose, we have identified

refactoring opportunities, also known as model smells, and applied refactoring

techniques. We discussed the results of applied refactoring techniques to demonstrate

the effects of the smells.

Keywords: model-driven development, spin-lock, UML, refactoring, threads,

multithreading.

1 Introduction

Model-driven development is applied across various domains and is increasingly

being adopted in specific industries, particularly those involved in managing complex

Model Refactoring for Spin-Lock Based Resource

Sharing: A Case Study for Train Control and

Management Software

B. E. Beygo1, G. Dayı1 and K. İmre2

1UGES, ASELSAN

Ankara, Türkiye
2Computer Engineering Department, Hacettepe University

Ankara, Türkiye

Proceedings of the Sixth International Conference on
Railway Technology: Research, Development and Maintenance

Edited by: J. Pombo
Civil-Comp Conferences, Volume 7, Paper 10.7

Civil-Comp Press, Edinburgh, United Kingdom, 2024
ISSN: 2753-3239, doi: 10.4203/ccc.7.10.7
ÓCivil-Comp Ltd, Edinburgh, UK, 2024

2

and extensive systems. Refactoring software models can help address various

challenges, such as improving model clarity, adapting to changing requirements, and

enhancing the structure of the models. Model refactoring can be applied in many

subjects to ensure the overall maintainability and quality of the models. Model

refactoring spans various disciplines, ensuring comprehensive maintainability and

quality of the models.

A spin-lock serves as a synchronization method primarily employed within

operating systems to safeguard shared resources from simultaneous access by multiple

threads or processes. When a thread or process has acquired the lock, it relinquishes

it upon completion of the critical section, thus enabling another thread or process to

obtain and utilize the resource. Unlike mutexes and semaphores that allow threads to

sleep while waiting for a resource, a spin-lock works differently. Instead of sleeping,

a thread continuously checks the lock's status in a loop until it becomes available.

Spin-locks can be advantageous when threads contending for the lock have similar

priorities and are running on different cores with affinity set accordingly.

Existing software models sometimes need to be refactored to obtain new

capabilities or to fix the errors discovered after development. Code refactoring can

also be applied to fix the errors, but code refactoring might not be efficient. In such

cases, requisite model refactoring can be applied.

Resource sharing between threads refers to the practice of allowing multiple

threads within a process to access and utilize shared resources concurrently. In multi-

threaded programming, threads often need to access common resources such as

memory, files, network connections, or hardware devices. Efficient and safe sharing

of these resources is crucial to ensure correct program behaviour and performance.

Resource sharing between threads typically involves synchronization mechanisms to

coordinate access to shared resources and prevent data corruption or race conditions.

Some common synchronization techniques include mutexes, semaphores, condition

variables, read-write locks, and atomic operations. Properly managing resource

sharing between threads is essential for writing correct and efficient concurrent

programs. Careful design and use of synchronization primitives are necessary to avoid

common issues such as deadlocks. Additionally, excessive synchronization can lead

to performance bottlenecks, so balancing safety and performance is important. Since

our architecture has efficient cache coherence protocols, the inter-core

communication latency is low, so spin-lock is more effective for this work.

Our work focuses on refining an existing software model aimed at resolving

resource-sharing issues through implementing a spin-lock mechanism. The model

belongs to a train control and management software that runs on the central control

unit of the system. The simultaneous reading and writing by multiple threads

accessing the same resource can lead to complications. While locking is unnecessary

if all threads merely read from the shared resource, in practice, reading operations

often coincide with writing operations in software projects. Challenges arise when

synchronization mechanisms are absent. In this study, we utilized Unified Modeling

Language (UML) diagrams of train control and management software to integrate a

3

spin-lock synchronization mechanism. We identified refactoring opportunities,

commonly referred to as model smells, and implemented appropriate refactoring

techniques. Through our analysis of the effects of these smells, we present the

outcomes of the applied refactoring techniques. In short, this work’s contribution is

to fix the resource-sharing problem on existing software models designed with UML

diagrams.

We preferred spin-lock over mutex because of the lower overhead. Spin-locks

typically have lower overhead compared to mutexes. In a spin-lock, a thread actively

waits in a loop until the lock becomes available, whereas a mutex puts the waiting

thread to sleep until the lock is available. This sleeping and waking process in mutexes

involves more overhead due to context switching. Spin-locks can also have lower

latency compared to mutexes, especially in scenarios where contention for the lock is

infrequent or short-lived. In such cases, spinning may be more efficient than putting

a thread to sleep and later waking it up. In our case, we only lock the source for the

copying process. Each thread has its source, which they use for internal operations.

Data is copied, according to their read or write labels, from threads’ sources to the

central source at the start and end of each cycle. The locks are free during times other

than copying. As a result, our locks live in a very short time. In this way, we avoided

context switching and we achieved more deterministic behaviour.

After the refactoring, there are data structure collections for each thread and a

single central data structure collection. Our first approach was to lock data structures

as a whole but we knew that spin-locks are more efficient if the lock is infrequent or

short-lived. So, we decided to group the data structure collection by their update

periods. We applied a distribution on the timeline. Data structure groups that have

greater periods are split over other cycles of execution. This distribution operation is

done to some of the threads. The threads that needed a few data structure groups did

not need a distribution since they ran their cycle already in a short time. With this

distribution operation, we achieved more deterministic behaviour.

The remainder of this paper is organized as follows; in Section 2, related works in

the literature are listed. In Section 3, we detailed the refactoring opportunities and

techniques. Refactoring results are presented in Section 4, and finally, Section 5

presents the conclusion.

2 Related Works

In [1], the authors proposed an integrated approach to model-driven refactoring by

selecting different UML diagrams to represent various views. The views are combined

and integrated to detect more bad smells. The research [2] explores the model smells,

and highlights commonly encountered smells. In addition, a list of behaviour-

preserving techniques is introduced. In [3], the authors introduced functional

decomposition as the dominant cause of design smells, and they applied a machine-

learning technique to UML models to recognize functional decomposition. Analysis

of challenges in model refactoring has been done in [4].

4

In [5], the authors presented a new lock-based resource-sharing protocol called

preemptable waiting locking protocol that can be applied in partitioned and global

scheduling scenarios. In [6], to resolve the resource allocation problem, a FIFO (first-

in, first-out) multi-resource lock algorithm for shared memory multiprocessors is

proposed. The investigated techniques in [7] are mainly based on assigning and

changing priorities of tasks in multiprocessor platforms. There are also two protocols

proposed in [8] for handling resource sharing under semi-partition scheduling in

multiprocessor platforms. In [9], a detailed investigation has been done for spin-based

global resource-sharing protocols for multi-core systems based on partitioned fixed-

priority scheduling.

3 Refactoring Opportunities and Techniques

Opportunities for model refactoring include optimizing the relationships between

components, improving the granularity of modules, reorganizing the data schema for

better efficiency or flexibility, or adopting a different architectural pattern to better

suit evolving requirements. Model refactoring aims to enhance system

maintainability, scalability, and adaptability while preserving the functionality and

interfaces that users interact with. While refactoring, next to preserving the

functionality, we focused on resolving the resource-sharing problem. Thus, the

selection criteria are special for our perspective of uncovering this problem.

3.1 Inaccurate Activity

Textual labels typically accompany activities within a software model. However,

labels are sometimes not enough to meet the needs. Activities may be renamed, new

activities may be added, and misnamed activities may be removed entirely to inform

readers about the use cases. In Figure 1, you can see the use case diagrams before the

refactoring on the left, and after the refactoring on the right. Considering

BusContoller, BusinessController, and ActivationController as our threads, simply

reading from, and writing to data structure collection creates a data corruption

problem which occurs when multiple threads read from and write to the same memory

location.

To prevent data corruption and achieve synchronized data sharing, first, we needed

to use more than one data structure collection. New data structure collections are

created and assigned to the threads while we keep the central data structure collection

as you can see in Figure 2. After deciding the number of collections, we renamed the

labels of read and write activities with a single copy activity. Now, since we ensure

the threads are processing their memory locations, each thread has to copy processed

data to the central collection, and from the central collection. We needed to lock the

sources for copying operations to prevent data corruption, so we added lock and

release activities as you can see on the right side of Figure 1.

5

Figure 1: Use case diagrams before and after the refactoring.

Figure 2: Data structure collection usage before and after the refactoring.

3.2 Inaccurate Naming

After we added a data structure collection for each thread, we looked for some

refactoring opportunities on the class diagram. CollectionManager as a class name

was not efficient enough. As you can see on the left side of Figure 3, this class has

control over only one data structure collection before the refactoring.

To reveal the intended purpose to readers, CollectionManager class is renamed to

Proxy, and ICollectionManager interface is renamed to IProxy. The purpose of this

new name is to form a slight demonstration because the refactored data structure

collections created an ecosystem that resembles proxy systems. Functions to get the

6

data by ID from collections, and functions to lock and release are also added to the

class and interface.

Figure 3: Class diagrams before and after the refactoring.

3.3 Insufficient Processes

A flowchart is a visual representation of a process or system, to illustrate the flow of

steps or activities from start to finish. There are three major threads for our software:

activation, bus, and business threads. For those threads, start points exist but finish

points do not because those threads are cyclic forever. They run to do some operations

in their determined periods. Processes for preventing data corruption are missing. In

our case, there must be processes to lock and release sources serving spin-lock

operations. Also, decision points to display when to handle spin-lock operations are

missing.

We have inserted lock, release, and copy processes to all threads as you can see in

Figure 4, Figure 5, and Figure 6. In the figures, repository means data structure

collection. Primary processes are preserved while inserting new processes. Each

thread locks the source, copies data for reading from the central repository to its own

repository, and releases the source. In addition, data structures are split into multiple

lists for bus and business controller threads to distribute CPU load between thread

cycles. Because of this, an additional process to determine the timed list of data

structures exists for bus and business controller threads.

7

Figure 4: Flowcharts for activation controller thread before and after refactoring.

Figure 5: Flowcharts for bus controller thread before and after refactoring

8

Figure 6: Flowcharts for business controller thread before and after refactoring.

3.4 Insufficient Dispatches

Sequence diagrams show the flow of messages or actions exchanged between objects

or components in software over time. In our case, the sequence diagram depicts the

interactions between the data structure collection manager and our three major

threads. Each thread runs in separate loops by continuously requesting data by ID, and

processing them as you can see in Figure 7. There are missing dispatches that handle

spin-lock operations. Dispatches that take data by ID are also insufficient for spin-

lock operations, they had to be renamed or replaced. Those dispatches are shown in

Figure 7 as “getBuffer”.

Since we split data structures into multiple lists for bus and business controller

threads, we needed to get data by group. Therefore, we added internal dispatches to

determine the timed data group to the bus and business controller. For spin-lock

operations, we added lock, copy, and unlock dispatches sequentially to all the threads.

This dispatch group exists before and after the internal dispatches of threads. The

newly added dispatch group before internal operations handles moving data from

central data structure collection to the thread’s data structure collection. On the other

hand, the newly added dispatch group after internal operations handles moving data

from thread’s data structure collection to central data structure collection. Figure 8

shows the refactored sequence diagram.

9

Figure 7: Sequence diagram before refactoring

10

Figure 8: Sequence diagram after refactoring.

11

4 Refactoring Results

After the refactoring, the software’s three major threads’ external behaviour has not

been changed while their internal structures have been improved. All of the three

threads are operating their data structures the same as before the refactoring. The only

differences are spin-lock steps, and data structure distribution steps between cycles.

Data structure distribution operations are considered an improvement to reduce the

number of spin times when the source is locked. Spin-lock steps include copying data

from one data structure to another. Even if the copying looks like an extra step, the

threads' cycle periods are long enough to include those copying operations, because

threads are sleeping for their period after they complete their operations on the data

structures before starting another cycle. The distribution operation made us ensure the

threads do all their operations within their cycle times. The distribution operation is

applied on the bus controller and business controller threads. We did not apply

distribution on the activation controller thread because there are not so many data

structures that the activation controller thread processes. The effect of distribution is

not so perfect for business controller thread because nearly all data structures are

processed in thread cycles. However, the major improvement is with the bus controller

thread because the data structures can be grouped almost evenly between cycle

periods. Data structures with ID numbers are put in a timeline in Figure 9 and Figure

10. Data structures with a period of 32 milliseconds are 100, 101, 102, 103; data

structures with a period of 64 milliseconds are 200, 201, 202, 203; data structures with

a period of 128 milliseconds are 301, 302, 303, 304, 305, 306; data structures with a

period of 256 milliseconds are 400, 401; and 500 is a data structure with a period of

512 milliseconds.

 Activation

Controller

Thread

Bus

Controller

Thread

Business

Controller

Thread

Number of runs with lock 75 165 38

Number of runs without lock 393 303 430

Minimum spin with lock 1 1 2

Maximum spin with lock 1640 8819 387

Average spin with lock 419 316 105

Table 1: Spin results within 15 seconds.

Spin results which are measured within 15 seconds are shown in Table 1. The table

contains the counts of cycles with and without locks; minimum, maximum, and

average spins for three major threads. The activation controller thread runs 75 out of

468 cycles with a lock hit which means 84% of cycles are run without waiting for the

lock. The bus controller thread runs 165 out of 468 cycles with a lock hit which means

65% of cycles in 15 seconds are run without waiting for the lock. This percentage

becomes 92% for the business controller thread. These percentages are high enough

to consider an improvement for our software because the threads exchange data

approximately these percentages. When we look at the minimum spins for threads, 1

or 2 is perfect for 32 milliseconds of cycles. 1640, 8819, and 387 may be considered

high for spins because spin-locks consume CPU resources while they spin, and it

12

could lead to high CPU utilization and increased context switching between threads,

especially on systems with many threads. However, our software does not include so

many threads, so the average spins of our threads which are 419, 316, and 105 are fine

results for our software.

Figure 9: Timeline of bus controller thread before refactoring.

Figure 10: Timeline of bus controller thread after refactoring.

5 Conclusions and Contributions

We chose spin-lock over mutex for lower overhead. Spin-locks typically incur less

overhead than mutexes as they keep threads active while waiting for the lock. This

avoids the overhead of putting threads to sleep and waking them up, reducing latency,

particularly in scenarios with infrequent contention. In our case, we lock the source

13

only during the copying process, ensuring a brief lock lifespan and deterministic

behaviour, avoiding context switching. Spin-locks prove beneficial when threads

contending for the lock share similar priorities and execute on different cores with

affinity configured accordingly. Given our architecture's efficient cache coherence

protocols, inter-core communication latency remains minimal, rendering spin-locks

notably effective for this task.

After refactoring, each thread now possesses its own set of data structure

collections alongside a centralized one. Initially, we adopted a strategy of locking

entire data structures, yet recognizing the efficiency of spin-locks in scenarios of

infrequent or brief locking periods, we opted for a different approach. We organized

the data structure collections based on their update frequencies, implementing a

distribution across the timeline. Collections with longer update periods were divided

across multiple execution cycles, a process selectively applied to certain threads.

Threads requiring only a few data structure groups bypassed this distribution,

completing their cycles swiftly. This distribution methodology facilitated a more

deterministic behaviour in our system. This work can be improved with more

refactoring aiming to reduce the number of spins for separate threads and thread

cycles.

References

[1] M. Misbhauddin, M. Alshayeb, “An integrated metamodel-based approach to

software model refactoring” in “Software & Systems Modeling 18”, 2013-2050,

2019, DOI:10.1007/s10270-017-0628-3

[2] B. Weber, M. Reichert, J. Mendling, H.A. Reijers, “Refactoring large process

model repositories”, Computers in industry, 62(5), 467-486, 2011,

DOI:10.1016/j.compind.2010.12.012

[3] B.K. Sidhu, K. Singh, N. Sharma, “A machine learning approach to software

model refactoring”, International Journal of Computers and Applications, 44.2:

166-177, 2022, DOI:10.1080/1206212X.2020.1711616

[4] T. Mens, G. Taentzer, D. Müller, “Challenges in model refactoring”, in “Proc.

1st Workshop on Refactoring Tools”, University of Berlin, Volume 98, 1-5,

2007.

[5] M. Alfranseder, M. Deubzer, B. Justus, J. Mottok, C. Siemers, “An efficient

spin-lock based multi-core resource sharing protocol”, in “2014 IEEE 33rd

International Performance Computing and Communications Conference

(IPCCC)”, Austin, TX, USA, 1-7, 2014, DOI:10.1109/PCCC.2014.7017090

[6] D. Zhang, B. Lynch, D. Dechev, “Fast and Scalable Queue-Based Resource

Allocation Lock on Shared-Memory Multiprocessors”, in: “Baldoni, R., Nisse,

N., van Steen, M. (eds) Principles of Distributed Systems. OPODIS 2013”,

Lecture Notes in Computer Science, vol 8304. Springer, Cham., 2013,

DOI:10.1007/978-3-319-03850-6_19

[7] S. Afshar, M. Behnam, R.J. Bril, T. Nolte, “Flexible spin-lock model for

resource sharing in multiprocessor real-time systems”, in “Proceedings of the

9th IEEE International Symposium on Industrial Embedded Systems (SIES

2014)”, Pisa, Italy, 41-51, 2014, DOI:10.1109/SIES.2014.6871185

14

[8] S. Afshar, F. Nemati, T. Nolte, “Resource Sharing under Multiprocessor Semi-

partitioned Scheduling”, in “2012 IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications”, Seoul, Korea (South),

290-299, 2012, DOI:10.1109/RTCSA.2012.25

[9] S. Afshar, M. Behnam, R.J. Bril, T. Nolte, “Per processor spin-based protocols

for multiprocessor real-time systems”, Leibniz Transactions on Embedded

Systems, 4(2), Article 03, 2017, DOI:10.4230/LITES-v004-i002-a003

