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Abstract 
 

Model-driven development is a widely used approach in various domains, and its 

popularity has been increasing in certain industries. Refactoring software models is 

essential to maintain and enhance the quality of software models. This paper focuses 

on refactoring an existing software model to achieve resource-sharing problems with 

the help of a spin-lock mechanism. Threads accessing the same resource might create 

problems if they read and write simultaneously. Locking is unnecessary if the shared 

resource is only read by all threads. Most of the time, the reading operation does not 

exist alone in the software projects, and the writing operation comes along with the 

reading operation. Problems arise when none of the synchronization mechanisms are 

used. In this work, we have worked on Unified Modeling Language diagrams to inject 

a spin-lock synchronization mechanism. For this purpose, we have identified 

refactoring opportunities, also known as model smells, and applied refactoring 

techniques. We discussed the results of applied refactoring techniques to demonstrate 

the effects of the smells. 
 

Keywords: model-driven development, spin-lock, UML, refactoring, threads, 

multithreading. 
 

1  Introduction 
 

Model-driven development is applied across various domains and is increasingly 

being adopted in specific industries, particularly those involved in managing complex 
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and extensive systems. Refactoring software models can help address various 

challenges, such as improving model clarity, adapting to changing requirements, and 

enhancing the structure of the models. Model refactoring can be applied in many 

subjects to ensure the overall maintainability and quality of the models. Model 

refactoring spans various disciplines, ensuring comprehensive maintainability and 

quality of the models. 
 

A spin-lock serves as a synchronization method primarily employed within 

operating systems to safeguard shared resources from simultaneous access by multiple 

threads or processes. When a thread or process has acquired the lock, it relinquishes 

it upon completion of the critical section, thus enabling another thread or process to 

obtain and utilize the resource. Unlike mutexes and semaphores that allow threads to 

sleep while waiting for a resource, a spin-lock works differently. Instead of sleeping, 

a thread continuously checks the lock's status in a loop until it becomes available. 

Spin-locks can be advantageous when threads contending for the lock have similar 

priorities and are running on different cores with affinity set accordingly. 
 

Existing software models sometimes need to be refactored to obtain new 

capabilities or to fix the errors discovered after development. Code refactoring can 

also be applied to fix the errors, but code refactoring might not be efficient. In such 

cases, requisite model refactoring can be applied. 
 

Resource sharing between threads refers to the practice of allowing multiple 

threads within a process to access and utilize shared resources concurrently. In multi-

threaded programming, threads often need to access common resources such as 

memory, files, network connections, or hardware devices. Efficient and safe sharing 

of these resources is crucial to ensure correct program behaviour and performance. 

Resource sharing between threads typically involves synchronization mechanisms to 

coordinate access to shared resources and prevent data corruption or race conditions. 

Some common synchronization techniques include mutexes, semaphores, condition 

variables, read-write locks, and atomic operations. Properly managing resource 

sharing between threads is essential for writing correct and efficient concurrent 

programs. Careful design and use of synchronization primitives are necessary to avoid 

common issues such as deadlocks. Additionally, excessive synchronization can lead 

to performance bottlenecks, so balancing safety and performance is important. Since 

our architecture has efficient cache coherence protocols, the inter-core 

communication latency is low, so spin-lock is more effective for this work. 
 

Our work focuses on refining an existing software model aimed at resolving 

resource-sharing issues through implementing a spin-lock mechanism. The model 

belongs to a train control and management software that runs on the central control 

unit of the system. The simultaneous reading and writing by multiple threads 

accessing the same resource can lead to complications. While locking is unnecessary 

if all threads merely read from the shared resource, in practice, reading operations 

often coincide with writing operations in software projects. Challenges arise when 

synchronization mechanisms are absent. In this study, we utilized Unified Modeling 

Language (UML) diagrams of train control and management software to integrate a 
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spin-lock synchronization mechanism. We identified refactoring opportunities, 

commonly referred to as model smells, and implemented appropriate refactoring 

techniques. Through our analysis of the effects of these smells, we present the 

outcomes of the applied refactoring techniques. In short, this work’s contribution is 

to fix the resource-sharing problem on existing software models designed with UML 

diagrams. 
 

We preferred spin-lock over mutex because of the lower overhead. Spin-locks 

typically have lower overhead compared to mutexes. In a spin-lock, a thread actively 

waits in a loop until the lock becomes available, whereas a mutex puts the waiting 

thread to sleep until the lock is available. This sleeping and waking process in mutexes 

involves more overhead due to context switching. Spin-locks can also have lower 

latency compared to mutexes, especially in scenarios where contention for the lock is 

infrequent or short-lived. In such cases, spinning may be more efficient than putting 

a thread to sleep and later waking it up. In our case, we only lock the source for the 

copying process. Each thread has its source, which they use for internal operations. 

Data is copied, according to their read or write labels, from threads’ sources to the 

central source at the start and end of each cycle. The locks are free during times other 

than copying. As a result, our locks live in a very short time. In this way, we avoided 

context switching and we achieved more deterministic behaviour. 
 

After the refactoring, there are data structure collections for each thread and a 

single central data structure collection. Our first approach was to lock data structures 

as a whole but we knew that spin-locks are more efficient if the lock is infrequent or 

short-lived. So, we decided to group the data structure collection by their update 

periods. We applied a distribution on the timeline. Data structure groups that have 

greater periods are split over other cycles of execution. This distribution operation is 

done to some of the threads. The threads that needed a few data structure groups did 

not need a distribution since they ran their cycle already in a short time. With this 

distribution operation, we achieved more deterministic behaviour. 
 

The remainder of this paper is organized as follows; in Section 2, related works in 

the literature are listed. In Section 3, we detailed the refactoring opportunities and 

techniques. Refactoring results are presented in Section 4, and finally, Section 5 

presents the conclusion.  
 
 

 

2  Related Works 
 

In [1], the authors proposed an integrated approach to model-driven refactoring by 

selecting different UML diagrams to represent various views. The views are combined 

and integrated to detect more bad smells. The research [2] explores the model smells, 

and highlights commonly encountered smells. In addition, a list of behaviour-

preserving techniques is introduced. In [3], the authors introduced functional 

decomposition as the dominant cause of design smells, and they applied a machine-

learning technique to UML models to recognize functional decomposition. Analysis 

of challenges in model refactoring has been done in [4]. 
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In [5], the authors presented a new lock-based resource-sharing protocol called 

preemptable waiting locking protocol that can be applied in partitioned and global 

scheduling scenarios. In [6], to resolve the resource allocation problem, a FIFO (first-

in, first-out) multi-resource lock algorithm for shared memory multiprocessors is 

proposed. The investigated techniques in [7] are mainly based on assigning and 

changing priorities of tasks in multiprocessor platforms. There are also two protocols 

proposed in [8] for handling resource sharing under semi-partition scheduling in 

multiprocessor platforms. In [9], a detailed investigation has been done for spin-based 

global resource-sharing protocols for multi-core systems based on partitioned fixed-

priority scheduling. 
 

 

 

 

3  Refactoring Opportunities and Techniques 
 

Opportunities for model refactoring include optimizing the relationships between 

components, improving the granularity of modules, reorganizing the data schema for 

better efficiency or flexibility, or adopting a different architectural pattern to better 

suit evolving requirements. Model refactoring aims to enhance system 

maintainability, scalability, and adaptability while preserving the functionality and 

interfaces that users interact with. While refactoring, next to preserving the 

functionality, we focused on resolving the resource-sharing problem. Thus, the 

selection criteria are special for our perspective of uncovering this problem. 
 

 

 

 

3.1  Inaccurate Activity 
 

Textual labels typically accompany activities within a software model. However, 

labels are sometimes not enough to meet the needs. Activities may be renamed, new 

activities may be added, and misnamed activities may be removed entirely to inform 

readers about the use cases. In Figure 1, you can see the use case diagrams before the 

refactoring on the left, and after the refactoring on the right. Considering 

BusContoller, BusinessController, and ActivationController as our threads, simply 

reading from, and writing to data structure collection creates a data corruption 

problem which occurs when multiple threads read from and write to the same memory 

location. 
 

To prevent data corruption and achieve synchronized data sharing, first, we needed 

to use more than one data structure collection. New data structure collections are 

created and assigned to the threads while we keep the central data structure collection 

as you can see in Figure 2. After deciding the number of collections, we renamed the 

labels of read and write activities with a single copy activity. Now, since we ensure 

the threads are processing their memory locations, each thread has to copy processed 

data to the central collection, and from the central collection. We needed to lock the 

sources for copying operations to prevent data corruption, so we added lock and 

release activities as you can see on the right side of Figure 1. 
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Figure 1: Use case diagrams before and after the refactoring. 
 

 
 

Figure 2: Data structure collection usage before and after the refactoring. 
 

3.2  Inaccurate Naming 
 

After we added a data structure collection for each thread, we looked for some 

refactoring opportunities on the class diagram. CollectionManager as a class name 

was not efficient enough. As you can see on the left side of Figure 3, this class has 

control over only one data structure collection before the refactoring.  
 

To reveal the intended purpose to readers, CollectionManager class is renamed to 

Proxy, and ICollectionManager interface is renamed to IProxy. The purpose of this 

new name is to form a slight demonstration because the refactored data structure 

collections created an ecosystem that resembles proxy systems. Functions to get the 
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data by ID from collections, and functions to lock and release are also added to the 

class and interface. 
 

 
 

Figure 3: Class diagrams before and after the refactoring. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

3.3  Insufficient Processes 
 

A flowchart is a visual representation of a process or system, to illustrate the flow of 

steps or activities from start to finish. There are three major threads for our software: 

activation, bus, and business threads. For those threads, start points exist but finish 

points do not because those threads are cyclic forever. They run to do some operations 

in their determined periods. Processes for preventing data corruption are missing. In 

our case, there must be processes to lock and release sources serving spin-lock 

operations. Also, decision points to display when to handle spin-lock operations are 

missing. 
 

We have inserted lock, release, and copy processes to all threads as you can see in 

Figure 4, Figure 5, and Figure 6. In the figures, repository means data structure 

collection. Primary processes are preserved while inserting new processes. Each 

thread locks the source, copies data for reading from the central repository to its own 

repository, and releases the source. In addition, data structures are split into multiple 

lists for bus and business controller threads to distribute CPU load between thread 

cycles. Because of this, an additional process to determine the timed list of data 

structures exists for bus and business controller threads. 
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Figure 4: Flowcharts for activation controller thread before and after refactoring. 

 

 

 

 
 

 
 

Figure 5: Flowcharts for bus controller thread before and after refactoring 
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Figure 6: Flowcharts for business controller thread before and after refactoring. 
 

 
 

3.4  Insufficient Dispatches 
 

Sequence diagrams show the flow of messages or actions exchanged between objects 

or components in software over time. In our case, the sequence diagram depicts the 

interactions between the data structure collection manager and our three major 

threads. Each thread runs in separate loops by continuously requesting data by ID, and 

processing them as you can see in Figure 7. There are missing dispatches that handle 

spin-lock operations. Dispatches that take data by ID are also insufficient for spin-

lock operations, they had to be renamed or replaced. Those dispatches are shown in 

Figure 7 as “getBuffer”. 
 

Since we split data structures into multiple lists for bus and business controller 

threads, we needed to get data by group. Therefore, we added internal dispatches to 

determine the timed data group to the bus and business controller. For spin-lock 

operations, we added lock, copy, and unlock dispatches sequentially to all the threads. 

This dispatch group exists before and after the internal dispatches of threads. The 

newly added dispatch group before internal operations handles moving data from 

central data structure collection to the thread’s data structure collection. On the other 

hand, the newly added dispatch group after internal operations handles moving data 

from thread’s data structure collection to central data structure collection. Figure 8 

shows the refactored sequence diagram. 
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Figure 7: Sequence diagram before refactoring 
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Figure 8: Sequence diagram after refactoring. 
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4  Refactoring Results 
 

After the refactoring, the software’s three major threads’ external behaviour has not 

been changed while their internal structures have been improved. All of the three 

threads are operating their data structures the same as before the refactoring. The only 

differences are spin-lock steps, and data structure distribution steps between cycles. 

Data structure distribution operations are considered an improvement to reduce the 

number of spin times when the source is locked. Spin-lock steps include copying data 

from one data structure to another. Even if the copying looks like an extra step, the 

threads' cycle periods are long enough to include those copying operations, because 

threads are sleeping for their period after they complete their operations on the data 

structures before starting another cycle. The distribution operation made us ensure the 

threads do all their operations within their cycle times. The distribution operation is 

applied on the bus controller and business controller threads. We did not apply 

distribution on the activation controller thread because there are not so many data 

structures that the activation controller thread processes. The effect of distribution is 

not so perfect for business controller thread because nearly all data structures are 

processed in thread cycles. However, the major improvement is with the bus controller 

thread because the data structures can be grouped almost evenly between cycle 

periods. Data structures with ID numbers are put in a timeline in Figure 9 and Figure 

10. Data structures with a period of 32 milliseconds are 100, 101, 102, 103; data 

structures with a period of 64 milliseconds are 200, 201, 202, 203; data structures with 

a period of 128 milliseconds are 301, 302, 303, 304, 305, 306; data structures with a 

period of 256 milliseconds are 400, 401; and 500 is a data structure with a period of 

512 milliseconds. 
 

 Activation 

Controller 

Thread 

Bus 

Controller 

Thread 

Business 

Controller 

Thread 

Number of runs with lock 75 165 38 

Number of runs without lock 393 303 430 

Minimum spin with lock 1 1 2 

Maximum spin with lock 1640 8819 387 

Average spin with lock 419 316 105 
 

Table 1: Spin results within 15 seconds. 
 

Spin results which are measured within 15 seconds are shown in Table 1. The table 

contains the counts of cycles with and without locks; minimum, maximum, and 

average spins for three major threads. The activation controller thread runs 75 out of 

468 cycles with a lock hit which means 84% of cycles are run without waiting for the 

lock. The bus controller thread runs 165 out of 468 cycles with a lock hit which means 

65% of cycles in 15 seconds are run without waiting for the lock. This percentage 

becomes 92% for the business controller thread. These percentages are high enough 

to consider an improvement for our software because the threads exchange data 

approximately these percentages. When we look at the minimum spins for threads, 1 

or 2 is perfect for 32 milliseconds of cycles. 1640, 8819, and 387 may be considered 

high for spins because spin-locks consume CPU resources while they spin, and it 
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could lead to high CPU utilization and increased context switching between threads, 

especially on systems with many threads. However, our software does not include so 

many threads, so the average spins of our threads which are 419, 316, and 105 are fine 

results for our software. 
 

 
 

Figure 9: Timeline of bus controller thread before refactoring. 
 

 
 

Figure 10: Timeline of bus controller thread after refactoring. 
 

5  Conclusions and Contributions 
 

We chose spin-lock over mutex for lower overhead. Spin-locks typically incur less 

overhead than mutexes as they keep threads active while waiting for the lock. This 

avoids the overhead of putting threads to sleep and waking them up, reducing latency, 

particularly in scenarios with infrequent contention. In our case, we lock the source 
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only during the copying process, ensuring a brief lock lifespan and deterministic 

behaviour, avoiding context switching. Spin-locks prove beneficial when threads 

contending for the lock share similar priorities and execute on different cores with 

affinity configured accordingly. Given our architecture's efficient cache coherence 

protocols, inter-core communication latency remains minimal, rendering spin-locks 

notably effective for this task. 
 

After refactoring, each thread now possesses its own set of data structure 

collections alongside a centralized one. Initially, we adopted a strategy of locking 

entire data structures, yet recognizing the efficiency of spin-locks in scenarios of 

infrequent or brief locking periods, we opted for a different approach. We organized 

the data structure collections based on their update frequencies, implementing a 

distribution across the timeline. Collections with longer update periods were divided 

across multiple execution cycles, a process selectively applied to certain threads. 

Threads requiring only a few data structure groups bypassed this distribution, 

completing their cycles swiftly. This distribution methodology facilitated a more 

deterministic behaviour in our system. This work can be improved with more 

refactoring aiming to reduce the number of spins for separate threads and thread 

cycles. 
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