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Abstract

Energy-efficient train operation in electric railways has been focused on the single
train aspect. However, further optimisation can be achieved by exchanging regen-
erative braking energy between trains. In this study, trains are considered in pairs
consisting of a braking train as provider and a powering train as receiver arranged in
temporal order. Firstly, the operation of the provider train is fixed, and then the oper-
ation of the receiver train is adjusted according to the dynamics of the provider train.
The operation adjustment is achieved by a method based on neighbourhood search
proposed in our work. The case studies demonstrate that the proposed method is ef-
fective in reducing the net energy consumption of multiple trains and can be easily
generalised to the case of multi-train periodic operation of a long term since in every
pair of trains, only the receiver train is adjusted.

Keywords: direct current electric railway, periodic train operation, regenerative brak-
ing energy, numerical optimisation, multi-fidelity modeling, neighbourhood search.
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1 Introduction

The optimisation of train operations aiming at reducing energy consumption has been
extensively studied since the 1950s. As for the analytical solution of energy-saving
train control, Pontryagin’s maximum principle was applied to derive optimal pat-
terns [1]. Considering a more comprehensive model of electric railway, the inherent
non-linearity in train motor characteristics, resistance forces, and power supply dy-
namics presented significant challenges, leading to the attempts of applying dynamic
programming method [2] and other heuristic methods like genetic algorithms to more
integrated train operation optimisation problems.

In pursuit of further energy savings, the utilisation of regenerative braking energy
(RBE) has become a critical consideration. In AC electric railways, regenerative brak-
ing energy can be returned to the power grid with bidirectional substations. Urban
railways with DC systems have shorter train intervals and braking happens more fre-
quently, but the DC system faces limitations in utilisation of RBE. In DC railways,
RBE can only be stored in energy storage systems (ESS), used by other trains power-
ing in the same power supply section, or dissipated by electric resistance. The addi-
tional cost incurred by ESS implementation prompts researchers to explore alternative
methods centered around adjusting train operations and run curves.

One fundamental approach to utilising RBE is the synchronization of the powering
and regenerating phases of multiple trains. In previous research, the optimisation
of the timetable is discussed in reference [3, 4, 5]. Besides timetable optimisation,
adjustment of train operation is also found to contribute to energy saving. Su et al. [6]
divided the optimisation into the timetable level and the single-train level. Chen et
al. [7] managed to minimize the total energy consumption of two trains by optimising
the operation strategy of one train at first and then optimising the other one based on
the previous result. Similarly, Sun et al. [8] managed to increase the utilisation of RBE
by adding a coasting section into the speed profile to increase the overlapping time of
adjacent trains.

Although the adjustment of train operation to increase the amount of regenerative
energy utilisation has been discussed in previous studies, two main issues remain.
Firstly, the impact of the time sequence of the two trains exchanging energy on the
overall energy consumption has not been adequately analysed, and thus the adjustment
of train operation has not been formed into a general methodology. Secondly, most of
the discussions are limited to two trains, ignoring the dynamic and interconnected na-
ture of urban railway systems. In real-world scenarios, trains in urban systems usually
operate in a tightly scheduled, ongoing sequence, influencing the performance and en-
ergy consumption of each other. Due to its cyclic nature, the roles of trains in energy
exchange are not fixed but variable. A train that departs and provides RBE in one
cycle can become a receiver of RBE in the next cycle, depending on its position in the
sequence and timing. To address these issues is vital for enhancing the efficiency and
sustainability of urban railway systems. In our previous work [9], a less computation-
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ally intensive train operation optimisation algorithm based on neighbourhood search
is proposed. In this study, we apply it to a more general model of periodic train op-
eration, discussing the energy-efficient operation pattern of trains utilising RBE from
each other.

The outline of this paper is as follows. The first section introduces the research
background of the train energy efficient operation and summarizes some newest progress
on this topic in recent studies. In the second section, a mathematical model of train
energy efficient operation problem is defined, including the objective function, con-
straints, and multi-fidelity models for evaluation. In the third section, we analyze the
optimal pattern of operation for trains to increase RBE utilization and save energy.
Then, a neighbourhood-search-based algorithm to solve train energy efficient opera-
tion problem is explained. In the fourth section, the proposed method is applied to a
model with periodically operated trains in the numerical case study and its results are
discussed. Finally, a conclusion and plan of future work are given in the last section.

2 Mathematical Model [11]

In this section, the mathematical definition of the problem and models used to evaluate
train operation are introduced.

2.1 Definition of problem

This study aims to find optimal operations for one single train when there exists an-
other train in the same power supply section generating RBE during its braking. Based
on the discussion of the interaction between two trains, the method can be further
applied to a more realistic system with multiple trains operating simultaneously by
combining them into pairs in temporal sequence.

In this paper, the train to regenerative brake and provide RBE is called the provider
train, and the train to power and absorb RBE is called the receiver train. They make
up the base of energy interaction in periodic train operations. The proposed method
is based on the following rules and assumptions. Firstly, the operation of the provider
train is fixed, and the run curve of the receiver train will vary with its operations
adjusted. Secondly, the optimal operation of a single train under given route conditions
has been already acquired through offline calculations.

2.2 Objective function

The objective of this study is to minimize the net energy consumption supplied by
substations, which equals to the sum of their traction energy minus utilised RBE, and
can be formulated as Equation (1):
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min (Et1 + Et2 + Eloss − ERBE) (1)

where Et1 denotes the traction energy of the provider train, and is a fixed value, Et2

denotes the traction energy of the receiver train, and it changes with the operations
adjusted, and ERBE denotes the amount of RBE utilised when the regenerative braking
of the provider train and the traction of the receiver train are synchronized.

2.3 Constraints

The constraints of this problem consist of arrival time, stop position and speed limit.
To address these constraints, an extended objective function is employed, which con-
verts the constraints into penalty forms, demonstrated by Equation (2):

f (p) = E + apfp (ep) + atft (et) + avfv (ev) (2)

where fp (ep), ft (et) and fv (ev) represent the error function of the stop position error,
arrival time error and over-speeding error respectively, defined as the square of the
absolute value of the error. ap, at, and av denote penalty factors for errors in stop
position, arrival time, and exceeding over the speed limit, respectively. They modify
the allowable tolerance for constraint violation.

2.4 Simulation models for objective function evaluation

Simulation models for train operation with high-fidelity (HF) and low-fidelity (LF)
models are used to evaluate the objective function values of various train operating
strategies. With intelligent utilisation of both models, an equilibrium of efficiency and
efficacy can be attained.

2.4.1 High-fidelity model

The complexity of the electrical network, the strong interaction between electrical and
mechanical factors, and the non-linearity [12] make it impossible to solve the problem
with analytical equations. The high-fidelity model calculates the dynamics of train
motion and power supply circuit simultaneously by dividing the total running time
by very short time steps and updating the states of the train, its location and speed,
and the states of the power supply circuit at each time step based on the states in the
previous step. The power supply network is modelled as a DC circuit with substations
equivalent to DC voltage sources of a constant voltage and resistance. The energy
consumption is calculated by integrating substation power. The configuration of high-
fidelity model is shown in Figure 1.
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Figure 1: Configuration of high-fidelity model.

2.4.2 Low-fidelity model

In the low fidelity model, simplified analytical solutions of train motion equations
are acquired by setting running resistance as a constant average of speed dependency.
Also, the low fidelity model ignores the effects of the power supply network by setting
the overhead voltage of trains as constant values instead, thus the variation of motor
output is ignored. Also, transmission loss of electricity is not considered. In a journey,
the parameters are assumed to be constant in each subsection and the dynamics of the
train are calculated using simplified equations of motion. This model can give a quick
approximation of the results.

3 Algorithm Description

In this section, the proposed algorithm to design train operation will be described.
The basic idea of neighbourhood search method is to find local optimal solution in
the neighbourhood of an initial solution by keeping generating new sample solutions
based on a certain structure of neighbourhood [13]. The heuristic has been applied
widely in optimisation problems of different fields. As for railway system, examples
of its application include timetable optimisation [14, 15], transit system design [16],
and so on.

As for the energy-efficient operation problem in this study, we make use of the
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analytical optimal pattern based on Pontryagin’s principle and low-fidelity model to
design an initial solution and limit search space. Then, several different operators are
applied to perturb current best solution to move to next solution in the neighbourhood
search, and multi-fidelity models are used for solution evaluation. The process of
generating new solutions in local solution space is also called perturbation. In the
following sections, the two steps of the proposed method, initial solution design and
neighbourhood search, will be explained.

3.1 Initial solution design

While real-world scenarios may involve energy exchange between multiple trains
within one power supply section, the focus of this study is on the simplest case of
interaction between two trains. This minimal unit of analysis serves as a foundational
framework that can be extended to address more complex and realistic situations. In
this paper, trains are considered in pairs and the train to generate regenerative energy
is called provider train, while the train to absorb the regenerative energy is called re-
ceiver train. As for train run curve adjustment, we choose to adjust the receiver train
only, which departs later. The main reason is that, from a cause-and-effect perspec-
tive, it is more adaptable to modify the train operation following a temporal sequence.
Even if a delay or a sudden operation change occurs in the provider train, the receiver
train can be adjusted accordingly before its departure, accommodating the altered con-
ditions. Besides, the key of utilising RBE is to synchronize two phases of two trains,
and adjusting the provider train will lead to an increase of its own traction energy
consumption, which is not energy efficient considering loss of energy transition.

Optimal train operation strategies considering RBE utilisation can be approximated
with a constant absorb ratio [10] or a variant one [8]. It can be inferred that when
the departure time interval is extremely short, indicating nearly simultaneous braking
of the preceding and tracking trains, there is no need to adjust the curve, as such
adjustments may lead to increased energy consumption. Conversely, when the interval
is excessively long, there is also no need for curve adjustments, as the original curve
allows for the utilisation of most regenerative braking energy. This deduction suggests
that the optimal run curve pattern of the receiver train changes only when regenerative
braking occurs while it is coasting or holding speed for the original curve. In such
cases, the optimal strategy involves coasting earlier than the original pattern and a
second acceleration when RBE becomes available. This insight helps narrow down
the region where the optimal run curve may exist. In this study, we use this rule
to generate the initial solution and decide the solution structure for the subsequent
neighbourhood search.

Suppose the original optimal operation pattern for single train is to switch from
maximum traction to coasting at the position l1, and to switch from coasting to maxi-
mum braking at the position l2. Then the initial solution for optimising search can
be generated by adding two switching points between l1 and l2. The time when
the train reaches the position l1 can be calculated by t1 =

√
2l1
a1

where a1 repre-
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sents the maximum acceleration. Time when the provider train starts braking tb1 is
known according to its fixed curve and known departure interval time. Determine
the back-and-forth relationship between t1 and tb1, and if t1 < tb1, insert a coasting
between these two moments. The length of the inserted coasting is determined by
lc =

√
2a1l1(tb1 − t1) +

1
2
a2(tb1 − t1)

2. Since the second phase is coasting and the
control input is zero, the acceleration applied in this phase a2 is only resistance, which
can be calculated by average speed. Notice that the optimal pattern of this case does
not consist speed holding phase. However, the proposed method can also handle cases
where speed holding phase exists.

3.2 Neighbourhood search and operators for perturbation [9]

The process of neighbourhood search is described by Figure 3. To generate new so-
lutions within the neighbourhood of the initial solution or the current best solution,
the algorithm employs operators. The process of generating new solutions is called
perturbation, which refers to adjusting the current solution with a relatively small step
in diverse directions. The optimal pattern of train run curve should be made up by
maximum acceleration, coasting, re-acceleration whose optimal rate is unsolvable an-
alytically, coasting and maximum braking. This limits the neighbourhood structure
of solutions and decides the rules of perturbation. In this study, four types of opera-
tors as shown in Figure 2 are applied to perturb the current solution and generate new
solutions.

The functions of operators are explained as follow:

1. Operator 1: This operator extends or shortens the distance of the first powering
phase. Figure 2a illustrates an example of shortening the length of acceleration,
leading to a later arrival.

2. Operator 2: This operator extends or shortens the distance of coasting after the
first acceleration. Figure 2b illustrates an example of extending the length of
coasting, leading to a lower average speed and later arrival.

3. Operator 3 and Operator 4: The operator3 extends or shortens the length of the
second powering phase, and the operator4 increases or decreases the accelera-
tion of this phase. Given that the available regenerative power from the provider
train is non-increasing over time, and the traction power required by the receiver
train is non-decreasing, a trade-off exists between traction energy consumption
and RBE utilisation. The length and acceleration of the second powering phase
is adjusted. Figure 2c illustrates an example of extending the second powering
phase length. Figure 2d illustrates an example of increasing the acceleration of
the second powering phase. Both examples show an earlier arrival.

Considering the distinct effects of four operators, they are applied to the current
best solution in pairs, creating combinations of two operators at a time. Subsequently,
a solution generated by each combination of operators undergoes slight perturbation
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Figure 2: Process of neighbourhood search algorithm with multi-fidelity models.

by adjusting the length of each phase and the acceleration of the second acceleration
with a random step size. This approach aims to enhance search efficiency and prevent
the algorithm from becoming trapped in a local minimum. All generated solutions
are then evaluated using the low-fidelity model, and one selected solution is further
assessed using the high-fidelity model. The step size of adjustment of each opera-
tor is determined by multiplying a predefined step size by a random number. The
step size is dynamically adjusted as neighbourhood search progresses. When three
consecutive adjustments successfully lead to improved solutions, the step size is dou-
bled. Conversely, when three consecutive adjustments fail to find a better solution,
it is considered that the probability of discovering a superior solution within the cur-
rent neighbourhood is low. Consequently, the step size is reduced, and the search is
conducted within a smaller neighbourhood. When the step size falls below 1% of the
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Figure 3: Four operators used in neighbourhood search.

initial step size, it is considered that the search has converged to a local minimum. At
this point, the search is either restarted or concluded.

4 Case Study

In our previous study [9], the proposed method is applied to a simple model con-
sidering the operation of only two trains. The proposed method can get comparable
solution as the dynamic programming method, which is expected to give the glob-
ally optimal solution numerically, but greatly reduce computational time, as shown in
Figure 4.
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Figure 4: Solution quality and computational time comparison of proposed method
and dynamic programming method [9]
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Motivated by the effectiveness demonstrated in preceding work, this case study
examines the performance of the method in an expanded model, which consists of
two inter-station sections traversed by trains operating in opposing directions. The
distance between stations is set to be the same for both sections, with substations on
both sides. The configuration of the designed model is shown in Figure 4. Each train
follows a periodic schedule, initiating its journey from designated starting stations and
repeating the cycle upon reaching the final stations. For clarity and simplicity, we refer
to the train moving from the lower end of the line to the upper end as the Up Train,
and the train moving in the opposite direction as the Down Train. Here Up Train+
refers to the train on up direction in the next cycle, while Up Train- refers to the train
on up direction in the previous cycle, in a periodic train operation, and the same for
Down Train+ as well as Down Train-.

SS SS

UpTrain

DownTrain

UpTrain+

x = 0 x = 2000 x = 4000

Station1 Station2 Station3

DownTrain-

UpTrain-

DownTrain+

Figure 5: Configuration of the case study model consisting of two substations, three
stations and trains operated periodically on both directions.

The cyclical nature of operation ensures a continuous flow of trains along the route.
The interaction between trains is governed by adjusting the run curve of the following
train while maintaining the operation of the preceding train fixed. The kinetic pa-
rameters and electric parameters of the designed model are listed in the table below.

time distance speed limit train weight
150s 2000m 80km/h 353000kg

voltage line resistance motoring efficiency regenerating efficiency
1500V 0.0327Ω/km 0.9 0.8

Table 1: Kinetic and electrical parameter settings of case study.

The timetable of the train operation is shown in Figure 5. The following description
is based on the up direction train, and the period from Up Train departure at Station
1, until its arrival at Station 3, is considered to be a complete cycle. In one cycle,
utilisation of RBE happens 4 times, and the relative location relationships of provider
train and receiver train are different and analysed as follow:

1. Up Train is a receiver train and Down Train is a provider train. The distance
between them is relatively long but decreasing with time.
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2. Down Train is a receiver train and Up Train is a provider train. The distance
between them is relatively short.

3. Up Train is a receiver train and Down Train is a provider train. The distance
between them is relatively long and increasing with time.

4. Down Train+ is a receiver train and Up Train is a provider train. The distance
between them is relatively short.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

Up Train Down Train Up Train+ Down Train+

Figure 6: Timetable and corresponding location of trains on both directions.

By giving a certain run curve to one train at any time, subsequent trains running
periodically can be paired with their previous trains and their energy-efficient oper-
ations can be acquired through neighbourhood search. In this case study, we tested
three different cases. The run curve of Up Train is set as the optimal run curve of
single train without considering RBE utilisation, and adjustment of run curve starts
from Down Train. Neighbourhood search is iteratively carried out based on the results
of previous iteration for 12 cycles. In the first case, no delay happens and all trains
depart following the timetable. In the second case, a delay of 10 seconds is inserted to
Up Train in the fifth cycle, which means it departs 10 seconds later than the standard
time. In the third case, a delay of 10 seconds is inserted to Down Train in the fifth
cycle. The run curves of all trains in cycle 1, 2, 5, 6, 11, and 12 are shown in Figure 7,
with run curves in other cycles omitted because they are of similar shapes. We assume
that when a train is delayed, the prior goal is to arrive the next station on time, so here
the delayed train run curve is also set as the optimal run curve of a single train.

The energy consumption of adjusted train operations in above three cases are com-
pared in Figure 8.

As can be seen from the figure, the total net energy consumption of trains is reduced
in first several cycles. Run curves of Up Train+, Up Train++ and Up Train+++ and
the total energy consumption amount remain the same in cycle 2, 3 and 4, implying a
stable converging solution for trains is acquired. It offers energy-saving benefits and
reinforces the viability of the proposed method on a larger scale. In cycle 5, Train1
is delayed for 10 seconds, and the run curves of following trains in this cycle and
subsequent cycles are re-adjusted based on this change. But the shape of run curves
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Figure 7: Train run curves in all cycles with Train1 delayed 10 seconds in cycle 5.
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Figure 8: Objective function variation in iterative calculations

of following trains do not change much. Since trains tend to operate purely during
the braking phase and the train stopping curves basically overlap, no matter how the
operation of the first half of the train changes, the impact on the subsequent trains will
be relatively small. This is also one of the important reasons for this study to adopt
the approach of taking the operation of the provider train as a fixed condition and
optimizing only the operation of the receiver train. Also, the tendency of results after
a delay occurred proves that disturbance brought by delay can be removed through
iterative calculation and a stable state can be reached again.
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5 Conclusion

Optimising train operation holds significant importance in saving energy of DC elec-
tric urban railways, particularly for enhancing regenerative braking energy utilisation.
The neighbourhood search algorithm proposed in our work is used to optimise run
curves of adjacent two trains to reduce their net energy consumption. The high time-
efficiency of the algorithm enables it to solve problems with multiple trains that run
periodically. Based on braking and powering timing, trains are combined into a pair
as provider train and receiver train, and the receiver train operation is adjusted based
on the provider train movement. A stable solution for all train operations in one cy-
cle is acquired by iteratively optimising train operations in temporal sequence, and
the stable solution saves total energy consumption in the long term. The convergence
of optimised train operation yields the reliability and applicability of the proposed
method. Besides, numerical case studies with delay are carried out, and the proposed
method is proven to be effective in reducing the effect of disturbance on energy con-
sumption. Adjusting only the operation of the receiver train, instead of both trains in
a pair, can still significantly reduce net energy consumption in a system with multiple
periodically running trains.

Future works will enhance the applicability of the proposed method to more real-
istic situations by discussing optimal operation modes suitable for energy interaction
between two trains with varying gradients or speed constraints on the route, for ex-
ample. The dynamic effect of the occurrence of delays on the formation of periodic
stable solutions and how to respond to them will also be part of the discussion in future
work.
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