
Simultaneous Optimisation of
Energy-Efficient Speed Profiles of Two Trains

by Parallel Dynamic Programming
K. Sakai, W. Ohnishi and T. Koseki

Department of Electrical Engineering and Information Systems,
The University of Tokyo, Japan

Abstract

Energy-saving methods for electric railways by modifying driving methods have been
proposed for carbon neutrality. In a direct current electric railway network, regener-
ative energy from a braking train needs to be consumed by another powering train to
avoid wasting kinetic energy. The aim of this paper is to propose a dynamic program-
ming method with parallel computing that solves large-scale optimisation problems
for the speed profiles of two trains considering regenerative energy. The numerical
evaluation results show that simultaneous optimisation can reduce total energy con-
sumption by using regenerative energy. They suggest that it is effective to optimise
the train receiving regenerative energy. The advantage of dynamic programming is
that its solution follows causality even when a train operation is disturbed.

Keywords: direct current electric railway, energy-efficient driving, regenerative brak-
ing energy, speed profile, dynamic programming, parallel computing.

1 Introduction

Reducing driving energy on electric railways is necessary to realise a decarbonised
society. Carbon dioxide emissions from electric train driving in Japan are about 7

1

Proceedings of the Sixth International Conference on
Railway Technology: Research, Development and Maintenance

Edited by: J. Pombo
Civil-Comp Conferences, Volume 7, Paper 10.4

Civil-Comp Press, Edinburgh, United Kingdom, 2024
ISSN: 2753-3239, doi: 10.4203/ccc.7.10.4
ÓCivil-Comp Ltd, Edinburgh, UK, 2024

million tonnes per year and account for more than 70% of the total emissions from
railway operators [1].

There are two approaches to energy-saving: the hardware approach and the soft-
ware approach. The former approach uses installing power storage devices, for ex-
ample. The latter approach uses devising driving operations. It is known that driv-
ing energy can be reduced by increasing the coasting time without using motors or
brakes [2,3]. Many methods have been proposed for optimising the train speed profile
that determines the driving operation between stations. Dynamic programming is one
of the typical methods to solve optimisation problems for energy-saving. It supports
complex models [4] such as speed limit including signals [5,6], and nonlinear running
resistance and motor efficiency [7]. Its performance for single-train optimisation is
better than the genetic algorithm and ant colony optimisation [8].

However, dynamic programming has a problem in that a large amount of calcu-
lation costs is needed to improve the solution quality. It also takes huge calculation
costs to utilise regenerative energy between multiple trains for further energy saving.
Simultaneous optimisation of two trains by dynamic programming is technically chal-
lenging, and previous research on two-train cooperative optimisation used other opti-
misation methods [9,10]. Energy-saving optimisation problems can be solved rapidly
by applying parallel computing to the dynamic programming method [11, 12], and it
is thought that it will be possible to solve large-scale problems in a practical time.

This paper focuses on dynamic programming and aims to solve a large-scale prob-
lem to optimise the speed profiles of two trains simultaneously to minimise the total
energy consumption. Simultaneous optimisation problems of two trains have a four-
dimensional state space considering regenerative energy, and we propose a parallel
computing method to be solved in a practical time. We numerically verify the effec-
tiveness of simultaneous optimisation based on the case study of two trains consider-
ing regenerative energy transfer. The numerical evaluation is performed for different
departure delay times because the timing to transfer regenerative energy may be lost
due to the departure delay of either train.

2 Mathematical optimisation of the energy-efficient train
speed profile

2.1 Principles of speed profile optimisation by dynamic program-
ming [4]

The optimisation problem of the energy-efficient train speed profile is usually formu-
lated as a problem to find the operation curve x(t) that minimises energy consumption
E for each stop as (1)–(4) below. There are some constraints: (2) the position and
speed at the beginning and end of the speed profile, (3) the maximum speed for each

2

𝑥

𝑣

⋯ ⋯ ⋯ ⋯
𝑡

Figure 1: Principle of initial searches in Dynamic Programming for single-train opti-
misation.

section, and (4) the maximum value of the acceleration and deceleration.

minimise E (1)
subject to x(0) = 0, v(0) = 0, x(T) = L, v(T) = 0 (2)

0 ≤ v(t) ≤ vmax (3)

− β −R(v) ≤ dv

dt
≤ α−R(v), (4)

where T is the travelling time between the two stops, L is the distance between the
two stops, α and β are the maximum value of the acceleration and deceleration of the
vehicle, respectively, and R is the running resistance.

The train speed profile x(t) is calculated by the motion equation (5), and the con-
sumption energy E is obtained by integrating the instantaneous power P (6).

dv

dt
= a(t)−R(v),

dx

dt
= v(t) (5)

E =

∫ T

0

P (a, v)dt, (6)

where a is the train acceleration equivalent to the control input.
In the dynamic programming method, the minimum accumulative energy is evalu-

ated based on the principle of optimality of a multi-staged optimisation problem. The
optimal speed profile is determined regardless of the driving operations before the
beginning of the speed profile to optimise.

Dynamic programming approximates optimisation problems by discretising time
and space. It discretises the time axis t and divides the state space consisting of train
position x and speed v into a grid, and N phase planes are obtained, as shown in
Figure 1.

Each lattice point on the grid has accumulative energy consumption as an evalua-
tion value. It is the minimum required energy for the train from the time and state at
the lattice point to the final state at the end time T . An accumulative energy consump-
tion at a lattice point (x(k∆t), v(k∆t)) at the time k∆t is calculated as the sum of

3

the evaluation value of a lattice point (x((k + 1)∆t), v((k + 1)∆t)) at the next time
(k+1)∆t and the energy increment during the time ∆t. The evaluation value is defined
as the minimum accumulative energy consumption by changing the control input u be-
tween the two lattice points (x(k∆t), v(k∆t)) and (x((k+1)∆t), v((k+1)∆t)). The
lattice points are evaluated retroactively in the order of the final time T, T − ∆t,
After completing the evaluations, the optimal control inputs u(k∆t) and the speed
profile x(t) can be obtained from the starting time 0,∆t,

The boundary condition of the final state is added to the objective function value
(7) and treated as a penalty.

ϕ(x(T), v(T)) = cx(x(T)− L)2 + cv v(T)
2, (7)

where cx and cv are the penalty factors. This penalty value is the energy evaluation
value of stage N .

2.2 Application of parallel computing

Optimising the speed profile by the dynamic programming method is suitable for par-
allel computing. That is because there is data dependence in the temporal direction,
but there is no data dependence in the spatial direction. Therefore, the calculation at
each lattice point does not require data on other lattice points at the same time t to
calculate the lattice points simultaneously.

First, the solutions of the difference equation discretised from the differential equa-
tion (5) in the literature [4] are memorised in parallel. The reference lattice point
locations and interpolation coefficients are stored in memory for each lattice point and
control input pair. Next, the energy values of each lattice point are evaluated in paral-
lel. Steps 1 and 2 are repeated in the backward direction of the time axis. Finally, the
optimal path is searched in the forward direction of the time axis. Optimal paths for
multiple delay cases can be searched in parallel in Step 3.

2.3 Sliding the confined state space to calculate

In this paper, the state space to evaluate the energy in the backward direction of the
time axis is confined depending on the time using the results of single-train optimi-
sation. Some regions of the state space where trains cannot exist for each time step
are excluded from the calculation. It is effective in shortening the calculation time
of dynamic programming [4]. It will be more effective for simultaneous optimisation
of two trains particularly because it requires a four-dimensional state space. How-
ever, there are few effective and general-purpose methods for confinement because
assuming a region where trains could exist requires experience.

In this paper, we propose a method that calculates only the periphery of the state
in the optimal solution of a single train for each time. That is because the optimal
solution of simultaneous optimisation of two trains is not likely to be far from the

4

Flow of program

Thread #0

Thread #1

Thread #2

Thread #3

(a) Thread parallelism

Flow of program
Process #0

Process #1

Process #2

Process #3

Flow of data

(b) Process parallelism

Figure 2: Concept of two parallel computing methods.

combination of two optimal solutions of single-train optimisation. In the numerical
calculation of this paper, the state space is confined depending on xw [m] before and
after the position in the optimal solution, but not depending on speed. That is because
there is a trade-off relationship between computer memory usage and calculation time
in the memorisation of the solution of the differential equation in calculation step 1. If
the same process in parallel computing handles lattice points in the same speed region,
solutions of the differential equation are likely to be reusable.

3 Methods of parallel computing

There are several parallel computing methods used in the railway field [13], and in
this paper, thread parallelism by OpenMP [14] and process parallelism by Message
Passing Interface (MPI) [15] are used together.

3.1 Thread parallelism (OpenMP)

It is a method of simultaneously launching multiple threads, which are execution units,
as shown in Figure 2(a). Parallel calculation is possible by running multiple cores
with different threads. Parts of the program can be parallelised, and memory is shared
between threads. OpenMP is an application programming interface (API) to realise
thread parallelism.

3.2 Process parallelism (MPI)

It is a method of simultaneously launching multiple processes, which are program
units, as shown in Figure 2(b). Memory is not shared between processes, and data
is distributed in each process. It can handle data so large that it does not fit in one
computer, but the communication time to synchronise data with inter-process com-
munication can be a bottleneck. MPI is the standard for inter-process communication.

5

Train 1 Train 2
Case 1 Proposed simultaneous optimisation for two trains
Case 2 Single-train optimisation Separate optimisation for single train

Case 3 Single-train optimisation
Single-train optimisation
based on the trajectory of Train 1

Table 1: Cases of numerical calculations.

Maximum acceleration α 3.3 km/h/s (0.9167m/s2)
Maximum deceleration β 3.5 km/h/s (0.9722m/s2)
Mass 295 t
Travelling time for each train T 100 s
Departure interval of two trains 50 s
Distance between stations L 1000m
Maximum speed vmax 65 km/h

Table 2: Train specifications and line conditions.

4 Numerical evaluation of simultaneous optimisation

Numerical calculations are performed to compare the energy-saving effect of the si-
multaneous optimisation method for two trains with the conventional method. Per-
formed numerical calculations are shown in Table 1. Case 1 optimises two trains
simultaneously considering regenerative energy transfer, Case 2 combines the two op-
timisation results of each train without considering regenerative energy transfer, and
Case 3 optimises the second train considering regenerative energy from the first train
optimised as a single train.

4.1 Calculation conditions

Train specifications and route conditions are configured for a DC-electrified metro
line as shown in Table 2. The running resistance R [km/h/s] depends on the speed
v [km/h] and is defined in the following equation (8).

R = 0.00001v2 + 0.0002v + 0.056 (8)

The available control inputs consist five levels of 1, 0.5, 0, -0.5, and -1. 1 is the maxi-
mum acceleration, 0 is coasting, and -1 is the maximum deceleration. Their powering
efficiency is 1.0, and regenerating efficiency is 0.5. Running energy is calculated by
integrating the difference between the mechanical power required for acceleration and
the regenerated power while the powering load of the other train is present without
considering the electrical circuit. Gradients and curves are ignored.

The time division step is fixed value 1 s. The position division step varies depending
on the region of the state space and the number of trains to optimise as shown in Figure

6

0 500 1000

Train 1 Position [m]

0

500

1000

T
ra

in
 2

 P
o

s
it
io

n
 [

m
]

t = 0 s t = 50 s t = 85 s

t = 100 s

t = 150 s

Figure 3: The sliding state space to calculate.

CPU Fujitsu A64FX (48 Cores, 2.2GHz)
RAM 32GB per node
Compiler Fujitsu C++ Compiler (Clang mode)

Table 3: Supercomputer performance.

3. For two trains, assuming the departure point is 0m, it is divided every 1.5m from
0m to 750m between stations, and every 0.5m from 750m to 1020m near the arrival
station. The number of points to calculate on the each position axis is 241. For a
single train, the position is divided every 0.125m. The speed division step is 1 km/h
for two trains, and 0.125 km/h for a single train. It slides based on the single-train
optimisation and xw is configured to support up to 20 s delay.

The optimisation problem was calculated by The University of Tokyo Informa-
tion Technology Centre’s supercomputer Wisteria/BDEC-01 Odyssey with the per-
formance shown in Table 3. The number of used nodes increases according to the
problem size. Four processes per node and twelve threads per process are launched.

4.2 Comparison with single-train separate optimisation

Figure 4 shows the speed profiles and energy consumption optimised by the simul-
taneous optimisation for two trains, and Figure 5 also shows the speed profiles and
energy consumption optimised by the separate optimisation for a single train. Figures
on the same column have the same delay time of Train 1, and figures on the same row
have the same delay time of Train 2. The top left figure is the case where there is no
delay.

7

Time [s]

S
p

e
e

d
 [

k
m

/h
]

0

50

 0 s 50 s 5 s 50 s 10 s 50 s 15 s 50 s 20 s 50 s

0

50

 0 s 55 s 5 s 55 s 10 s 55 s 15 s 55 s 20 s 55 s

0

50

 0 s 60 s 5 s 60 s 10 s 60 s 15 s 60 s 20 s 60 s

0

50

 0 s 65 s 5 s 65 s 10 s 65 s 15 s 65 s 20 s 65 s

0 50 100 150
0

50

 0 s 70 s

0 50 100 150

 5 s 70 s

0 50 100 150

 10 s 70 s

0 50 100 150

 15 s 70 s

0 50 100 150

 20 s 70 s

Train 1

Train 2

Time [s]

E
n

e
rg

y
 [

k
W

h
]

0

10

20

 0 s 50 s 4.43 kWh

7.22 kWh
11.65 kWh

 5 s 50 s 4.90 kWh

7.46 kWh
12.36 kWh

 10 s 50 s 5.46 kWh

7.68 kWh
13.15 kWh

 15 s 50 s 6.33 kWh

7.92 kWh

14.25 kWh

 20 s 50 s
7.40 kWh

8.15 kWh

15.55 kWh

0

10

20

 0 s 55 s 4.34 kWh

8.00 kWh
12.34 kWh

 5 s 55 s 4.80 kWh

8.25 kWh
13.05 kWh

 10 s 55 s 5.47 kWh

8.25 kWh
13.72 kWh

 15 s 55 s 6.27 kWh

8.49 kWh

14.76 kWh

 20 s 55 s
7.25 kWh

9.00 kWh

16.25 kWh

0

10

20

 0 s 60 s4.27 kWh

9.10 kWh
13.37 kWh

 5 s 60 s4.70 kWh

9.09 kWh
13.79 kWh

 10 s 60 s5.33 kWh

9.36 kWh
14.69 kWh

 15 s 60 s6.15 kWh

9.63 kWh

15.78 kWh

 20 s 60 s
7.20 kWh

9.90 kWh

17.09 kWh

0

10

20

 0 s 65 s 4.26 kWh

10.27 kWh
14.53 kWh

 5 s 65 s 4.63 kWh

10.55 kWh
15.18 kWh

 10 s 65 s 5.29 kWh

10.55 kWh
15.84 kWh

 15 s 65 s 6.16 kWh

10.55 kWh

16.71 kWh

 20 s 65 s
7.14 kWh

10.84 kWh

17.98 kWh

0 50 100 150
0

10

20

 0 s 70 s 4.26 kWh

12.14 kWh
16.40 kWh

0 50 100 150

 5 s 70 s 4.63 kWh

12.14 kWh
16.76 kWh

0 50 100 150

 10 s 70 s 5.19 kWh

12.14 kWh
17.33 kWh

0 50 100 150

 15 s 70 s 6.06 kWh

12.14 kWh

18.20 kWh

0 50 100 150

 20 s 70 s
7.05 kWh

12.14 kWh

19.18 kWh

Train 1

Train 2

Sum

Figure 4: Optimisation results of Case 1. Case 1 optimises two trains simultaneously
considering regenerative energy transfer.

Simultaneous optimisation of Case 1 shown in Figure 4 reduces the total energy
consumption compared to separate optimisation of Case 2 shown in Figure 5. The en-
ergy consumption of Train 2 in Case 1 is larger than that in Case 2 for all delay times.
However, in Case 1, the increase of the acceleration energy of Train 2 is provided by
the regenerative energy of Train 1. It is important to consider regenerative energy in
net energy optimisation.

Even when a departure delay occurs on either or both, the regenerated energy is
transferred at the appropriate timing in the simultaneous optimisation of Case 1. On
the other hand, regenerated energy transfer happens by chance in separate optimisation
of Case 2. The advantage of simultaneous optimisation is that the timing when Train
2 accelerates and the timing when Train 1 decelerates can be matched.

8

Time [s]

S
p

e
e

d
 [

k
m

/h
]

0

50

 0 s 50 s 5 s 50 s 10 s 50 s 15 s 50 s 20 s 50 s

0

50

 0 s 55 s 5 s 55 s 10 s 55 s 15 s 55 s 20 s 55 s

0

50

 0 s 60 s 5 s 60 s 10 s 60 s 15 s 60 s 20 s 60 s

0

50

 0 s 65 s 5 s 65 s 10 s 65 s 15 s 65 s 20 s 65 s

0 50 100 150
0

50

 0 s 70 s

0 50 100 150

 5 s 70 s

0 50 100 150

 10 s 70 s

0 50 100 150

 15 s 70 s

0 50 100 150

 20 s 70 s

Train 1

Train 2

Time [s]

E
n

e
rg

y
 [

k
W

h
]

0

10

20

 0 s 50 s

6.39 kWh
6.39 kWh

12.77 kWh

 5 s 50 s

7.22 kWh

6.39 kWh

13.61 kWh

 10 s 50 s

8.38 kWh

6.39 kWh

14.76 kWh

 15 s 50 s

9.75 kWh

6.39 kWh

16.14 kWh

 20 s 50 s

11.70 kWh

6.39 kWh

18.09 kWh

0

10

20

 0 s 55 s 6.39 kWh

7.22 kWh

13.61 kWh

 5 s 55 s

7.22 kWh
7.22 kWh

14.44 kWh

 10 s 55 s

8.38 kWh

7.22 kWh

15.60 kWh

 15 s 55 s

9.75 kWh

7.22 kWh

16.98 kWh

 20 s 55 s

11.70 kWh

7.22 kWh

18.92 kWh

0

10

20

 0 s 60 s6.39 kWh

8.38 kWh

14.76 kWh

 5 s 60 s
7.22 kWh

8.38 kWh

15.60 kWh

 10 s 60 s

8.38 kWh
8.38 kWh

16.75 kWh

 15 s 60 s

9.75 kWh

8.38 kWh

18.13 kWh

 20 s 60 s

11.70 kWh

8.38 kWh

20.08 kWh

0

10

20

 0 s 65 s 6.33 kWh

9.75 kWh

16.09 kWh

 5 s 65 s
7.22 kWh

9.75 kWh

16.98 kWh

 10 s 65 s
8.38 kWh

9.75 kWh

18.13 kWh

 15 s 65 s

9.75 kWh
9.75 kWh

19.51 kWh

 20 s 65 s

11.70 kWh

9.75 kWh

21.46 kWh

0 50 100 150
0

10

20

 0 s 70 s 6.13 kWh

11.70 kWh

17.83 kWh

0 50 100 150

 5 s 70 s 6.63 kWh

11.70 kWh

18.33 kWh

0 50 100 150

 10 s 70 s
7.04 kWh

11.70 kWh

18.74 kWh

0 50 100 150

 15 s 70 s
7.86 kWh

11.70 kWh

19.56 kWh

0 50 100 150

 20 s 70 s
9.02 kWh

11.70 kWh

20.72 kWh

Train 1

Train 2

Sum

Figure 5: Optimisation results of Case 2. Case 2 combines the two optimisation results
of each train without considering regenerative energy transfer.

The speed profiles optimised by dynamic programming follow causality in delayed
cases. The energy evaluation value from 50 s to 100 s assumes that both trains 1 and
2 are running at that time. If a departure delay of the following train can be foreseen,
the optimisation results will be more energy-efficient. However, the results in Figure
4 are optimal without the foresight of delays that have not yet occurred.

4.3 Comparison with single-train optimisation from the preceding
to the following

Next, we compare the proposed method of Case 1 with Case 3, single-train optimi-
sation from the preceding to the following. In Case 3, the speed profile of Train 1 is

9

Time [s]

S
p

e
e

d
 [

k
m

/h
]

0

50

 0 s 50 s 5 s 50 s 10 s 50 s 15 s 50 s 20 s 50 s

0

50

 0 s 55 s 5 s 55 s 10 s 55 s 15 s 55 s 20 s 55 s

0

50

 0 s 60 s 5 s 60 s 10 s 60 s 15 s 60 s 20 s 60 s

0

50

 0 s 65 s 5 s 65 s 10 s 65 s 15 s 65 s 20 s 65 s

0 50 100 150
0

50

 0 s 70 s

0 50 100 150

 5 s 70 s

0 50 100 150

 10 s 70 s

0 50 100 150

 15 s 70 s

0 50 100 150

 20 s 70 s

Train 1

Train 2

Time [s]

E
n

e
rg

y
 [

k
W

h
]

0

10

20

 0 s 50 s 4.19 kWh

7.34 kWh
11.53 kWh

 5 s 50 s 4.71 kWh

7.57 kWh
12.28 kWh

 10 s 50 s 5.28 kWh

7.68 kWh
12.96 kWh

 15 s 50 s 6.10 kWh

7.79 kWh

13.89 kWh

 20 s 50 s
7.26 kWh

8.28 kWh

15.54 kWh

0

10

20

 0 s 55 s 4.15 kWh

8.13 kWh
12.29 kWh

 5 s 55 s 4.65 kWh

8.25 kWh
12.91 kWh

 10 s 55 s 5.28 kWh

8.37 kWh
13.65 kWh

 15 s 55 s 6.02 kWh

8.62 kWh

14.64 kWh

 20 s 55 s
7.12 kWh

9.01 kWh

16.13 kWh

0

10

20

 0 s 60 s4.27 kWh

9.11 kWh
13.37 kWh

 5 s 60 s4.72 kWh

9.23 kWh
13.95 kWh

 10 s 60 s5.28 kWh

9.36 kWh
14.65 kWh

 15 s 60 s6.03 kWh

9.49 kWh

15.52 kWh

 20 s 60 s
7.10 kWh

9.62 kWh

16.72 kWh

0

10

20

 0 s 65 s 4.18 kWh

10.42 kWh
14.61 kWh

 5 s 65 s 4.61 kWh

10.56 kWh
15.17 kWh

 10 s 65 s 5.27 kWh

10.42 kWh
15.69 kWh

 15 s 65 s 5.97 kWh

10.70 kWh

16.67 kWh

 20 s 65 s
7.06 kWh

10.84 kWh

17.91 kWh

0 50 100 150
0

10

20

 0 s 70 s 4.15 kWh

12.15 kWh
16.30 kWh

0 50 100 150

 5 s 70 s 4.66 kWh

12.15 kWh
16.82 kWh

0 50 100 150

 10 s 70 s 5.24 kWh

12.15 kWh
17.39 kWh

0 50 100 150

 15 s 70 s 6.00 kWh

12.15 kWh

18.15 kWh

0 50 100 150

 20 s 70 s 6.96 kWh

12.15 kWh

19.11 kWh

Train 1

Train 2

Sum

Figure 6: Optimisation results of Case 3. Case 3 optimises the second train consider-
ing regenerative energy from the first train optimised as a single train.

optimised independently without considering regenerative energy, and then, the speed
profile of Train 2 is optimised considering regenerative energy transfer with Train 1.
Figure 6 shows the optimised speed profiles and energy consumption of Case 3.

The total energy in Case 3 is slightly smaller than that in Case 1 in many delay
cases even though only the train receiving regenerative energy considers regenerative
energy transfer. That is because the division of the state space in Case 3 is finer. The
calculation time in Case 1 was 255 s by using 24 nodes, and that in Case 3 was 243 s
by using 6 nodes. Simultaneous optimisation has a four-dimensional state space and
needs more calculation costs to divide the state space finely.

These results suggest that it is effective to optimise only the train receiving re-
generative energy. However, the simultaneous optimisation method of two trains is

10

meaningful in that the importance of adjusting the speed profile of the receiver train
was clarified by global optimisation.

5 Conclusions

The dynamic programming method used for energy-efficient optimisation of train
speed profiles requires a lot of computation costs to find a high-quality solution. Par-
allel computing can accelerate the computation speed. This paper proposes a parallel
computing method to solve larger optimisation problems. The larger problem needs
more computer memory usage, but the memory usage can be reduced by confining the
state space based on the speed profile optimised for the single train.

In a case study of two DC metro trains considering regenerative energy, it was
verified that simultaneous optimisation for multiple trains can reduce the total energy
consumption by utilising regenerative energy. However, when the departure of either
train is delayed, there is a possibility that the regenerative energy cannot be transferred
as planned. Simultaneous optimisation by dynamic programming can find the optimal
speed profiles for multiple delay cases in parallel. The speed profiles optimised by
dynamic programming follow causality in delayed cases and it has a practical advan-
tage in that it does not need departure prediction. The result also suggests that it is
effective to optimise only the train receiving regenerative energy.

Acknowledgement

This research was conducted using the FUJITSU Supercomputer PRIMEHPC FX1000
and FUJITSU Server PRIMERGY GX2570 (Wisteria/BDEC-01) at the Information
Technology Center, The University of Tokyo.

References
[1] Ministry of Land, Infrastructure, Transport and Tourism, “Carbon neutrality ac-

celeration in the railways field study group (1st document).” https://www.
mlit.go.jp/tetudo/content/001474317.pdf. (in Japanese)

[2] Y. Kimura, S. Koga, “Energy saving operation of a frequently stopped com-
muters’ train,” Transactions of the Society of Instrument and Control Engineers,
20, 357–360, 1984, DOI: 10.9746/sicetr1965.20.357 (in Japanese)

[3] P. Howlett, I. Milroy, P. Pudney, “Energy-efficient train control,” Control Engi-
neering Practice, 2, 193–200, 1994, DOI: 10.1016/0967-0661(94)90198-8

[4] H. Ko, T. Koseki, M. Miyatake, “Application of dynamic programming to the
optimization of the running profile of a train,” WIT Transactions on The Built
Environment, 74, 103–112, 2004, DOI: 10.2495/CR040111

11

[5] N. Oba, M. Miyatake, “Design of energy-efficient train speed profiles consider-
ing fixed-block signaling system,” Electrical Engineering in Japan, 205, 26–35,
2018, DOI: 10.1002/eej.23114

[6] S. Ichikawa, M. Miyatake, “Energy Efficient Train Trajectory in the Railway
System with Moving Block Signaling Scheme,” IEEJ Journal of Industry Appli-
cations, 8, 586–591, 2019, DOI: 10.1541/ieejjia.8.586

[7] S. Watanabe, T. Koseki, Y. Noda, M. Miyatake, “Optimized energy-saving speed
profile in linear-motor railway system,” Electrical Engineering in Japan, 202,
22–32, 2018, DOI: 10.1002/eej.23041

[8] S. Lu, S. Hillmansen, T. K. Ho, C. Roberts, “Single-Train Trajectory Optimiza-
tion,” IEEE Transactions on Intelligent Transportation Systems, 14, 743–750,
2013, DOI: 10.1109/TITS.2012.2234118

[9] Y. Huang, H. Yu, J. Yin, H. Hu, S. Bai, X. Meng, M. Wang, “An integrated ap-
proach for the energy-efficient driving strategy optimization of multiple trains by
considering regenerative braking,” Computers and Industrial Engineering, 126,
399–409, 2018, DOI: 10.1016/j.cie.2018.09.041

[10] M. Chen, X. Feng, Q. Wang, P. Sun, “Cooperative Eco-Driving of Multi-Train
Under dc Traction Network,” IEEE Transactions on Transportation Electrifica-
tion, 7, 1805–1821, 2021, DOI: 10.1109/TTE.2021.3059433

[11] G. Matsuura, M. Miyatake, “Optimal train speed profiles by dynamic program-
ming with parallel computing and the fine-tuning of mesh,” WIT Transactions
on the Built Environment, 135, 767–777, 2014, DOI: 10.2495/CR140641

[12] K. Sakai, W. Ohnishi, T. Koseki, “Verification of fast calculation of energy-
saving speed profile by parallel dynamic programming,” in 29th Jointed Railway
Technology Symposium (J-RAIL2022), 322–325, 2022. (in Japanese)

[13] Q. Wu, M. Spiryagin, C. Cole, T. McSweeney, “Parallel computing in railway
research,” International Journal of Rail Transportation, 8, 111–134, 2020, DOI:
10.1080/23248378.2018.1553115

[14] https://www.openmp.org/.
[15] https://www.mpi-forum.org/.

12

