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Abstract 
 

This paper addresses the enhancement of passenger safety and comfort in public 

transport by automatically processing the audio streams from an anomaly detection 

system. The importance of anomaly detection has recently captured the attention of 

numerous researchers. Consequently, automated techniques, primarily based on 

artificial neural networks, are increasingly being adopted. This expansion is largely 

driven by the availability of large datasets and the use of graphics processing units, 

which facilitate the training of such models. Thus, these technologies have become 

the foundation for models that meet the railway industry’s needs in ensuring the safety 

of passengers in train coaches. Although these models are promising and deliver high 

performance, they do so at the expense of significant system complexity and high 

computational costs. The results obtained confirm the benefits of using audio signals 

to detect unusual events and highlight some challenges in defining the appropriate set 

of model hyperparameters. 
 

Keywords: anomaly detection, auto encoder, artificial intelligence, machine learning, 

audio streams. 
 

1  Introduction 
 

Audio anomaly detection presents a challenge for several reasons: Firstly, the 

definition of anomaly cases can vary depending on the circumstances and the use case. 

For example, the same activity might be considered normal or abnormal (such as a 

child's screams in a train's family area versus an adult's screams). Secondly, the 
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accessibility and collection of abnormal data require significant effort due to the rarity 

of these events in real life. 

 

For these reasons and others, anomaly detection is generally regarded as an 

unsupervised learning problem, aiming to train a model using only normal data. 

During the testing phase, events and activities that are poorly estimated by the model 

are considered anomalies. More specifically, in this work, we aim to detect anomaly 

cases using audio and video data through unsupervised approaches.  

 

Generally, Let’s consider the set U consisting of frames of unlabeled sound samples, 

noted as XN, and under the hypothesis that the majority of these samples follow the 

normal distribution pN; i.e., (x ∈ XN) ∼ pN. Then, an anomaly detection (AD) problem 

is the process of identifying a sample test as either a normal sample that follows the 

distribution pN, or as an anomaly: 

 
Where M is the metric used for calculating the distance between a given instance and 

the distribution of normal data. F is a feature extractor that transforms the input data 

into a set of discriminative features. τ is the threshold from which a data point is 

considered as an anomaly. 

 

The aim of this paper is to detect anomalous data from audio data using unsupervised 

approaches. Thus, this paper includes methods that address issues which can meet our 

objective. To this end, we introduce a railway-specific dataset that was generated 

artificially. We present in the following a description of the proposed approach for the 

generation of this dataset. 
 
 

 

 
 

 

2  Methods 

 

2.1  Dataset creation 
 

An embedded railway environment is a unique setting where new acoustic challenges 

must be taken into account. This acoustic environment is extremely noisy and non-

stationary. It consists of a blend of many sound sources originating from mechanical, 

electrical, and electronic subsystems operating concurrently, as well as noises made 

by passengers. In this context, we propose constructing a dedicated database by 

combining railway background noises with sounds of normal and abnormal events. 

These are detailed in the subsequent sections, which are then followed by an 

explanation of the mixing method we employ. 
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2.1.1  Railway background sounds 

 
Railway background sounds were recorded during technical runs aboard various 

SNCF trains (suburban, regional, and high-speed) to create variability and to make 

our system less specific. The portable recording equipment was placed in the middle 

and at the end of the train. A total of six hours of background sounds were captured. 

The audio signal was recorded on a single 32-bit channel and was sampled at 44.1 

kHz. These background sounds consist of a mix of engine noises, the friction of 

wheels on rails, the sound of air conditioning, commercial audio announcements, and 

so forth.  

 

2.1.2  Normal, abnormal events and additional sounds 
 

Four types of abnormal sound events (gunshots, screams, glass breaking, and 

spraying) along with two types of normal events (conversation and music) were 

selected. The sound samples for these categories were obtained from the Freesound 

website [1]. Each sample was reviewed to verify the audio content before being 

included in the final dataset. These sounds were recorded as a 32-bit mono channel 

signal with a sampling rate of 44.1 kHz. 

 

In the context of a commercial train, other routine operational sounds such as buzzers 

and the opening and closing of doors may occur. We have enriched the dataset of 

normal event sounds with these additional sounds from another railway audio dataset. 

 

 

 

2.1.3  Database samples generation process 

 
Here, we explain the method used to blend background noises, abnormal sounds, and 

additional audio to create individual sequences for our new database. Each sound 

sequence produced is 10 seconds long, and we adhere to the following workflow to 

process each sequence in the dataset: 

 

1. We randomly select a background sound from our collection. The audio 

sample's gain is randomly set between 0 and -10 dB to ensure variety while 

avoiding audio saturation. 

 

2. We randomly choose between 0 to 3 abnormal events for detection. Their 

timing within the 10-second background is also determined at random. 

Overlapping of samples is permitted, and a random gain of between -5 and -

15 dB is applied to each. 

 

3. We then randomly determine the inclusion of normal events, with their 

temporal placement and gain chosen within the same range as abnormal 

events. Labels are generated concurrently with the integration of the samples 



4 

 

 

of the detectable events. The labeling uses One Hot encoding: each sequence 

that corresponds to a detectable event has a unique label tensor. Each element 

of this tensor starts at 0, except for the frames when a detectable event occurs, 

which are set to 1.  

 

The distribution of durations for both abnormal events and additional sounds is 

detailed in Table 1 

 

 Event type Class Duration 

Train set Normal events Human conversation 3471 wav files 

Music 

Test set Abnormal events Gunshot 1157 wav files 

Scream 

Glass break 

Spray 

Normal events Human conversation 

Music 

Table 1 : Dataset distribution 

 

2.2  Machine learning models 

 

2.2.1  ID-Conditioned Auto-Encoder for unsupervised anomaly 

detection 
 

The first model  we selected was chosen from the article “ID-Conditioned Auto-

Encoder for unsupervised anomaly detection” [2]. The work proposed in this article 

constitutes an adaptation of the C2AE method (Class conditioned auto-encoder for 

open-set recognition) [3] for unsupervised anomaly detection. 

 

Indeed, this issue can be viewed as a specific case of an open-set recognition problem, 

where unsupervised learning for the detection of abnormal cases is considered binary 

classification. In this scenario, there is only one class available during the learning 

process (the negative class, i.e., normal examples). 

 

Open-set recognition refers to the challenge of identifying unknown classes during 

the test phase while maintaining the network's performance for the known classes 

(those seen in the learning phase). More simply put, the authors propose a label-

conditioned Auto-Encoder consisting of: 

- Encoder E: X → Z, which matches a feature vector X from the input space X 

to a code E(X) in the latent space Z. 

- Decoder D: Z → X, which takes the code Z from the latent space Z and 

reconstructs it into an output D(Z) of the same size as the input vector from X. 

- Conditioning composed of two functions, Hγ and Hβ: Y → Z, which take an 

input label l (one-hot) from Y and map it to two vectors Hγ(l) and Hβ(l) that 

are the same size as the codes derived from Z. 
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Architecture: The proposed model consists of an encoder E, a decoder D, and a 

conditioning mechanism Hγ, Hβ, all of which are fully connected networks (FC nets). 

 

The encoder features four dense blocks. Similarly, the decoder is composed of four 

dense blocks followed by a dense layer. Each dense block includes a sequence of 

operations: dense layer → batch normalization → ReLU activation. 

 

 
Fig1: IDCAE model architecture 

 

As for the conditioning, it is implemented using the FiLM [4] technique. It takes the 

labels l as input and consists of a dense layer followed by a sigmoid activation function 

to produce Hγ(l), and a separate dense layer (applied to the label) to produce Hβ(l). 
 

 
 

2.2.1  Anomaly detection in raw audio using deep autoregressive 

networks 
 

 The second model we selected was chosen from the article “Anomaly detection in 

raw audio using deep autoregressive networks” [5] 

 

The work presented in [5] is based on the use of an autoregressive generative model 

for unsupervised anomaly detection. The model employed is WaveNet [6], an 

approach initially proposed for speech generation that is based on PixelRNN [7] and 

PixelCNN [8], two methodologies introduced for generating high-resolution images. 

 

Given the rarity of anomalous cases, the proposed network is trained solely on normal 

data. To detect anomalies, audio samples are fed into the trained network, which then 

generates a sequence corresponding to the input. If the audio sample is normal, the 

generator will successfully produce a signal similar to the input; however, if the 

sample is anomalous, the generator will fail to reconstruct it accurately. The mean 

squared error is used to calculate the distance between the generated signal and the 

actual signal: a small distance indicates a normal case, while a large distance suggests 

an anomaly. 
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Architecture: Like [8], the proposed model employs 2 stacks of 10 dilated causal 

convolution layers, totaling 20 layers. Residual blocks and skip connections are 

utilized throughout the network, with an exponential increase in the dilation rate in 

each stack. The number of filters used in the skip connections is 512, and in the 

residual blocks, it is 256. 

Figure 2 provides an overview of a residual block (indicated by dashed lines) in 

WaveNet. The figure also illustrates the overall architecture of the network, 

highlighting multiple stacks of residual blocks and blocks with skip connections. This 

detailed representation helps in understanding the complex structure and the flow of 

data within the network. 

 

 
Fig 2 : Overview of the Residual Block and the Overall Architecture of WaveNet: 

 

 

3  Results 

 

3.1  Evaluation metrics 
 

The evaluation metrics in this context are often the same as those used in classification 

problems. 

3.1.1  Confusion matrix 
 

To assess the prediction quality of a model, it is evaluated based on its predictions 

compared to the observed data. 

 

By definition, a true positive (TP) is an outcome where the model correctly predicts 

the positive class. Similarly, a true negative (TN) is an outcome where the model 

correctly predicts the negative class. A false positive (FP) is an outcome where the 

model incorrectly predicts the positive class. Lastly, a false negative (FN) is an 

outcome where the model incorrectly predicts the negative class. 

3.1.2 ROC curve and Area Under Curve (AUC) 
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ROC Curve: An ROC (receiver operating characteristic) curve is a graph that depicts 

the performance of a model by varying a certain threshold. This curve plots the true 

positive rate (TPR) against the false positive rate (FPR). 

 

The true positive rate (TPR), also known as recall, is defined as follows: 

𝑇𝑃𝑅 =
TP

TP + FN
 

 

The false positive rate (FPR) is defined as follows:  

𝐹𝑃𝑅 =
FP

FP + TN
 

 

AUC: This stands for the area under the ROC curve. It provides a comprehensive 

measure of performance across all possible classification thresholds. This metric has 

the advantage of being scale-invariant and independent of the classification threshold, 

making it an attractive and widely used measure for evaluating model performance. 

 

pAUC: This refers to the partial AUC. It is an enhanced metric of AUC that focuses 

on maximizing the true positive rate while maintaining a low false positive rate. 

 
Fig3: pAUC 

 

3.2  Models evaluation 
 

We conducted a two-stage evaluation of our two models. The first stage involved 

benchmarking the models on a generalist dataset named DCASE using default 

settings. Subsequently, to save time, only the better-performing model was selected, 

trained, and optimized on the railway dataset. 

 

3.2.1  Benchmarking on DCASE 

 
The DCASE Challenge is an annual competition organized by several major 

universities around the world and sponsored by large companies such as Google, 

Amazon, and others. Each session of the challenge presents multiple tasks centered 

around audio, with training and testing data provided for each. At the end of each 

challenge, a workshop is organized to discuss the results and the models proposed. 
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DCASE Challenge 2020: In this section, we specifically focus on Task 2 of the 

DCASE 2020 challenge, which addresses the issue of "Unsupervised Detection of 

Anomalous Sounds for Machine Condition Monitoring." 

 

 

 

 

 
Fig 4 : DCASE dataset 

 

 

 

 

 

As Figure 4 indicates, the provided data consists of three datasets: a development 

dataset, an additional training dataset, and a test dataset. These data are subsets of the 

ToyADMOS and MIMII datasets, comprising normal/abnormal sounds from six types 

of real machines and toys. Each recording is approximately a single audio channel of 

10 seconds in length that includes both the operating noise of the target machine and 

ambient noise.  

Each machine type corresponds to a label that identifies the machine, defining an 

individual of the same type of machine. 

- Development Dataset: Consists of 3 to 4 machine identifiers (machine IDs). Each 

dataset corresponding to a machine ID comprises 100-200 samples of normal and 

anomaly data (training data and test data). The anomaly data are used only for testing 

the models' performance and are not used in the learning phase. 

- Additional Dataset: These are additional data that can be used for model training. 

It contains 1000 normal samples. 

- Evaluation Dataset: Contains the same types of machines provided in the 

development set. It includes 400 normal and abnormal samples for each machine ID. 

The IDs in this dataset are different from those in the development set. 

Below are the results we obtained:  
Params Metrics IDCAE WaveNet 
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Default AUC 0,75 0,72 

pAUC 0,77 0,69 

Model complexity (parameters) ~400k ~2M 

Running Time (50 epoch) ~20 min ~2 days 

Prediction Time (10s wav file) ~21,4 ms ~2 sec 

Table 2: Benchmarking performance. 

 

Although the AUC and pAUC performance of the two models are very similar, the 

complexity of the WaveNet model appears to be significantly higher compared to 

IDCAE. This complexity results in heavier burdens during training and in making 

predictions with this model. It is important to remember that we are in an embedded 

context where the chosen model must be compatible with the constraints of real-time 

execution. Therefore, it is only natural that we opt for the IDCAE model for further 

experimentation. 
 

3.2.2  Training and testing on railway dataset. 
The IDCAE model previously identified was then trained, tested, and optimized on 

the synthetically generated railway dataset. 

 

The first step in the optimization involved training the model with several sets of 

hyperparameters. Table 2 displays all the tested hyperparameters and highlights (in 

red) those that produced the best performance. 

 
Hyperparameter Value Hyperparameter Valu Value es 

hop_length [512, 1024] learning_rate [0.01, 0.001, 0.1] 

mels [256, 128, 64] C [10, 5] 

n_fft [2048, 1024, 4096] alpha [0.85, 0,75] 

epochs [200, 50, 150, 80, 
100, 300, 250, 120] 

nm_loss_name [‘L1’, ‘L2’] 

 
encoder [64, 32, 16] 

[128, 64, 32, 32] 

[128, 64, 32, 16, 8] 

[256, 128, 64, 32] 

[256, 128, 64, 32, 16]  

[64, 64, 32, 16] 

decoder [128, 128, 128, 64] 

[512, 512, 256, 128] 

[64, 128, 128, 128, 128] 

[256, 256, 128, 128] 

[128, 128, 64] 
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[512, 256, 128, 128] 

[256, 128, 128, 128] 

Table 2 : Hyperparameters tuning 

 

 

 

This set of optimal hyperparameters enabled us to generate the ROC curve, AUC, 

pAUC, and the following confusion matrix:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 : ROC curve and confusion matrix 

 

 

 

 

 
We can easily highlight the importance of hyperparameter optimization, which 

allowed us to achieve quite high performance. By analyzing the confusion matrix, we 

can observe a high number of false negatives (sounds predicted as normal when they 

are abnormal). We will now examine the impact of the decision threshold τ. 

AUC:   0,86 

pAUC: 0,73 
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Fig 6 : Impact of the decision threshold on the confusion matrix 

 
It becomes quite clear that lowering the decision threshold substantially reduces the 

number of false negatives. However, this reduction in false negatives is accompanied 

by an increase in false positives. Therefore, it is crucial to find a compromise on what 

error rate is acceptable in production when the system is mounted on a train. 

 

Finally, it is possible to analyze which classes of anomalies are most prevalent among 

the false negatives produced by the model. 

 
Fig 7 : Distribution of classes among false negatives 

 

It appears that very impulsive noises such as screams and gunshots are most 

represented among the false negatives. This distribution can be interpreted by the fact 

that impulsive noises are present in the normal sounds on a train (electrical relays, 
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wheel screeching, etc.). For screams, one could suggest, for example, confusion 

between children's screams, which are normal, and adult screams, which are not. 
 

4  Conclusions and Contributions 
 

This work has confirmed that anomaly detection systems can add significant value to 

the railway industry, particularly in identifying any unusual and rare events. The use 

case for anomaly detection is very useful in assisting railway companies with their 

mission to ensure the safety and security of their public transport users. 

Models based on autoencoders have proven particularly effective in distinguishing 

between normal and abnormal events, achieving an AUC score of 0.86. Our study also 

highlighted the importance of selecting the decision threshold τ to find an acceptable 

compromise on the error rate. 

Further modeling work and enriching the dataset are the next steps to further minimize 

the model's errors. 
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