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Abstract 
 

Main tasks in railway inspection includes identifying, locating and classifying rail 

surface defects. In this paper, we develop a three-stage deep learning based framework 

for automating multiple analytical tasks in the rail surface defect inspection via using 

rail images. It is capable of identifying the presence, the sizes with coordinates, and 

the category of various defects. The first stage employs an autoencoder based 

generative model to identify the input image containing defects, which then trigger 

the second stage with a segmentation model for locating defects at the pixel level. 

Finally, the defect category is classified with segmented and cropped defect regions 

obtained from the previous stages. The proposed method is evaluated thoroughly with 

different performance criteria on a real dataset. Moreover, due to limited publicly 

available datasets in railway inspection, we synthesized a new dataset to further verify 

the generalizability of the proposed framework. Results of the computational studies 

validated its accuracy and suitability on a self-powered inspection system in terms of 

the computational load, performance, and inference time. 
 

Keywords: deep learning, defect inspection, image analytics, multi-task learning, rail 

transport safety, system health management. 
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1  Introduction 
 

The rail surface defect detection (RSDD) is critical to ensure the safety of rail 

transport. Traditional RSDD is performed manually or based on processing signals [1, 

2]. They target more on the diagnosis tasks rather than automation of manual 

inspection routines. Meanwhile, sensors, such as the stereo cameras, radar, and 

LIDAR, are prohibitively expensive and require considerable power during the data 

collection, which might limit the ease-of-the usage. 

Technologies for collecting visual data and processing images have been advanced, 

and the early vision-based RSDD methods mainly rely on the texture characteristics 

of the image [3, 4]. The recent development of machine learning technologies enables 

the RSDD based on the automatic feature engineering [5]. Although these methods 

can yield reliable and effective results based on sufficient training samples, it is 

challenging to gather a large number of unhealthy rail images due to the rare 

occurrence and appearance variations of the surface defects. Even for the semi-

supervised deep learning approaches [6], they only realize RSDD at the image level. 

It is hard to identify the location and size of the surface defects at the same time.  

This paper proposes an automated rail image multi-analytics framework for the 

RSDD task. Given input images, the framework integrates three analytical functions, 

identification, segmentation, and classification. Figure 1 offers an example of testing 

results. The different types of surface defects are well detected with segmentation 

masks, bounding boxes, and categories, showing the potential to evolve the manual 

analytics of rail images to a machine-vision enabled automated process.   

The main contributions of this work are summarized as follows:  

1. We propose a novel framework for realizing multiple analytical functions in 

RSDD. Compared with previous methods focusing one particular analytical 

function in RSDD, the proposed framework synergizes three distinct stages 

to identify, localize, and classify surface defects based on rail images. To the 

best of our knowledge, the proposed framework is the first to simultaneously 

address multiple analytical tasks in the RSDD. 

2. The necessity and value of each stage in the proposed framework is verified 

through a set of computational experiments, which form an ablation study. 

The developed framework can achieve high accuracies and performs robustly 

regarding multiple analytical tasks, representing a suitable solution for the 

defect inspection on the rail surface.  

3. The applicability of the proposed framework is proved through extended 

experiments on a new dataset. The results show that the proposed framework 

has the generalization capability in applications to deal with various targets 

in the RSDD scenario. 

Figure 1: Test samples of different type of defects. 
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2  Related Work 
 

The traditional practice of inspecting rail surface defects relies on experienced 

maintenance crews walking along rails to manually check the health condition of rails 

periodically, which is time-consuming and labor-intensive. With the innovation of 

sensing technologies, it becomes feasible to realize the defect detection by extracting 

features from collected signals, such as  the acoustic emission [7] and vibration [8]. 

Nevertheless, the signal-based methods are often only suitable for the detection of 

specific defects. Their accuracies are also limited by the quality of the collected signal 

and the surrounding environment. 

 

Meanwhile, the advancement of machine-vision techniques effectively addresses 

many real-world applications, such as the frontal obstacle detection [9], railway track 

extraction [10], as well as the problem of RSDD. In terms of different stages of the 

technological evolution, previous works relating to the vision-based RSDD can be 

categorized into the traditional image processing and machine learning methods. The 

former relies on the explicitly engineered features based on texture analyses, while 

the latter serves transforming the image data into complex, abstract, and learnable 

representations. The RSDD problem based on traditional methods was essentially a 

texture analysis problem, which could be solved by the edge detection [3], filtering 

[11, 12], and thresholding [13, 14]. Although they focus on the explicitly engineered 

features in RSDD, it can be challenging in complex cases with different illuminations 

or backgrounds. The rich accumulation of traditional methods and the rapid 

development of learning principles resulted in the evolution of machine learning 

approaches to overcome the requirement of more complex features for a specific 

defect. 

 

The machine learning methods can be classified into two groups based on their 

training mechanisms, the supervised and semi-supervised methods. The former type 

of methods predefined the detectable features and was trained under supervision. 

Typical methods include the support vector machine (SVM) [15, 16], k-nearest 

neighbor (KNN) [12], and deep convolutional neural networks (DCNNs) [17-21]. 

Although the supervised methods have achieved a reasonable performance on RSDD 

task, it is impossible to collect and label sufficient defect samples due to the limitation 

and randomness of the defects in realistic cases, which makes the final detection and 

classification result unstable. The semi-supervised approaches are beneficial when 

addressing the lack of defective image data collected in the railway context for RSDD, 

such as the autoencoder (AE) [22] and generative adversarial network (GAN) [6]. 

 

In general, we notice that most vision-based RSDD models are trained in a 

supervised manner, requiring sufficient training samples from existing classes. Few 

of the semi-supervised methods aim to simultaneously identify and localize the 

defects in the rail images from both image and pixel levels. There is an urgent need to 

introduce more reliable and effective methods on RSDD. Thus, we put forward a 

novel framework to integrate the identification, segmentation, and classification of 

rail surface defects.  
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3  Method Description 
 

The proposed RSDD framework consists of three sequential stages enabling multiple 

analytical functions as shown in Figure 2. In this section, we explain each stage in 

terms of its task, architecture, training procedure, and testing procedure.  

Figure 2: Overall view of the proposed three-stage method. 

 

3.1 Identification of Unhealthy Rails 

Taking inspirations from [23], the first stage serves the identification of the unhealthy 

rail (IUR). As illustrated in Figure 3, given the rail image 𝑥 ∈ ℝ𝐶×𝐻×𝑊 as input, the 

IUR based on an AE learns to reconstruct the healthy version of 𝑥 as follows: 
�̂� = 𝐺𝜙(𝑧) = 𝐺𝜙(𝐸𝜃(𝑥)), (1) 

where 𝐸𝜃  is an encoder network and 𝐺𝜙  is a decoder network, and 𝑧 ∈ ℝ𝑑  is the 

bottleneck features in IUR as well as a lower-dimensional manifold of 𝑥. In training 

process of IUR, the dissimilarity between 𝑥 and its reconstruction �̂� is expressed via 

a match function 𝑀(𝑥, �̂�). A high value of 𝑀(𝑥, �̂�) indicates that 𝑥 is unhealthy and 

contains surface defects. 

Figure 3: Architecture of the IUR. 

 

The architecture of the 𝐸𝜃 in IUR is composed of 6 convolutional layers. The output 

number of channels in each layer is doubled starting from 16 and arriving to 512. The 

input images are resized to 128 × 128 × 3 considering both computation burden and 

identification accuracy. With kernel size 𝑘 =  3, stride 𝑠 =  2, and padding size 𝑝 =
 1, 𝑧 ∈ ℝ512 is a 1-dimentional vector as the least representations of input image 𝑥. 

The LeakyReLu with a slope 0.1 is employed as the activation function after a batch 

normalization (BatchNorm) in all convolutional layers of 𝐸𝜃. The decoder network 

𝐺𝜙 is a symmetrical structure of 𝐸𝜃. The number of channels in the feature map is 

halved after each and reduced to 16 at the end of 𝐺𝜙. To make the input 𝑥 and its 
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reconstruction �̂� lie closely on the manifold 𝑧, the final output of 𝐺𝜙 is still an image 

with size of 128 × 128 × 3  through up-sampling. Different from 𝐸𝜃 , the ReLu 

activation is utilized in the intermediate layers in 𝐺𝜙 except for the output layer, which 

utilizes the tanh(·) as the activation function to introduce nonlinearity to the 

reconstructions.  

 

The AE architecture in IUR is trained via a semi-supervised approach that receives 

only healthy images without foreign objects during training. As illustrated in Figure 

3, the loss function ℒ𝑖𝑑𝑒𝑛𝑡 consists of two parts, the perceptual loss ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 and 

the pixel loss ℒ𝑝𝑖𝑥𝑒𝑙. The former term describes the 𝐿2 distance between the encoded 

features of 𝑥  and �̂�  as well as encourages the output image �̂�  to be perceptually 

similar to 𝑥 . The second term ℒ𝑝𝑖𝑥𝑒𝑙  is the commonly used error term directly 

describing the pixel difference between 𝑥 and �̂�. Overall, the loss function ℒ𝑖𝑑𝑒𝑛𝑡 is 

defined as follows: 

ℒ𝑖𝑑𝑒𝑛𝑡 = ∑ 𝔼𝑥,�̂� ‖𝑓𝑖,𝐸𝜃
(𝑥) − 𝑓𝑖,𝐺𝜙

(�̂�)‖
2

+ 𝔼𝑥,�̂�‖𝑥 −  �̂�‖1, (2) 

where 𝑓𝑖(∙) denotes the 𝑖𝑡ℎ activation layer from both 𝐸𝜃 and 𝐺𝜙.  

 

With the AE well trained, one possible design of the match function, 𝑀(𝑥, �̂�), based 

on the encoded features is defined as follows to express the fit of �̂� to 𝑥:  

𝑒𝑛𝑐(𝑥, �̂�) = 𝔼𝑥,�̂� ‖𝑓𝐸𝜃
(𝑥) − 𝑓𝐺𝜙

(�̂�)‖
1

, (3) 

where 𝑓(∙)  denotes the last activation layer of 𝐸𝜃  and 𝐺𝜙 . The computation of 

𝑒𝑛𝑐(𝑥, �̂�) directly derives from ℒ𝑖𝑑𝑒𝑛𝑡 . Since 𝐺𝜙  only reconstruct the healthy rails 

devoid of any surface defects, a threshold based on 𝑒𝑛𝑐(𝑥, �̂�)  is required during 

testing. A rail image with 𝑒𝑛𝑐(𝑥, �̂�)  larger than the threshold is identified as 

unhealthy, and the next stage is activated. A difference map 𝑑𝑖𝑓𝑓(𝑥, �̂�) is defined at 

the same time for detecting the location and the size of the defect in the next stage: 

𝑑𝑖𝑓𝑓(𝑥, �̂�) = ‖𝑥 −  �̂�‖1 + ∑ ‖𝑓𝑖,𝐸𝜃
(𝑥) − 𝑓𝑖,𝐺𝜙

(�̂�)‖
2

, (4) 

3.2 Segmentation of Defect Regions 

The segmentation of the defect region (SDR) aims to identify the location and size of 

the defect. Once the stage is activated, the stacked differences 𝑑𝑖𝑓𝑓(𝑥, �̂�) become the 

input of the SDR to generate the segmentation map �̂�. The SDR is required to have a 

mapping from the calculated difference 𝑑𝑖𝑓𝑓(𝑥, �̂�) to the ground truth label map 𝑦. 

Unlike other detection tasks that localize the objects with rectangular bounding boxes, 

the �̂� can accurately reflect the shape of the defect with a pixel-wise segmentation 

mask as shown in Figure 1. Moreover, the �̂� is utilized to crop the detected defects, 

which will be classified at the end of the framework.  

 

The SDR follows an encoder-decoder-encoder architecture as in Figure 4. All layers 

in SDR utilize the form of convolution-BatchNorm-activation. Different from IUR, 

the 𝐺𝜙 in SDR adapts the network architecture of U-net [24] to skip 𝑧 and directly 

concatenate all channels from corresponding layers in 𝐸𝜃. For example, the feature 
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map with 128 channels in 𝐺𝜙 will concatenate the feature map of the same depth from 

𝐸𝜃 to form a new feature map with 256 channels. Following typical convolutions, the 

depth of the stacked feature map is back to 128 and is ready for the next convolutional 

layer. This type of skip connection is formed in a symmetrical manner. Unlike generic 

U-net in segmentation tasks [25, 26], a discriminator network 𝐷𝜔 is added after the 

𝐺𝜙  to enhance the capability for generating �̂� as authentic as possible through an 

adversarial training. 𝐷𝜔 is also a replica of 𝐸𝜃 but without a BatchNorm to the first 

layer, It applies a dropout regularization with a probability 𝑝 =  0.2 after LeakyReLu 

activation layers and reaches to a 4 × 4 output [27].  

Figure 4: (a) Training procedure of SDR. (b) Testing procedure of SDR. 

 

Supervised training is employed in the SDR. Given the rail image 𝑥 , the 

segmentation map is generated through �̂� = 𝐺𝜙(𝐸𝜃(𝑥)). The ground truth 𝑦 and the 

generated �̂� are the targets to be discriminated by 𝐷𝜔 . The objective of the SDR 

training is based on the Wasserstein distance [28], which can be expressed as: 

ℒ𝐺,𝐷 = 𝔼𝑦[𝐷𝜔(𝑦)] −  𝔼𝑧 [𝐷𝜔 (𝐺𝜙(𝑧))] , (5) 

where 𝐺𝜙 and 𝐷𝜔 are trained simultaneously. The goal of 𝐺𝜙 is not only to fool 𝐷𝜔 

but also generate �̂�  to be close to the ground truth 𝑦  in L1 sense. Therefore, we 

explore the constraints directly based on 𝑦  and �̂�  as in (6). The final objective 

ℒ𝑑𝑒𝑡𝑒𝑐𝑡 is the sum of ℒ𝐺,𝐷  and ℒ𝐸,𝐺  and follows the two-player min-max game as 

expressed in (7): 

ℒ𝐸,𝐺 = 𝔼𝑥,𝑦‖𝑦 −  𝐺𝜙(𝐸𝜃(𝑥))‖
1

, (6) 

arg min
𝐺𝜙

max
𝐷𝜔

ℒ𝑑𝑒𝑡𝑒𝑐𝑡 = arg min
𝐺𝜙

max
𝐷𝜔

ℒ𝐺,𝐷 + ℒ𝐸,𝐺 (7) 
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In testing, the segmentation map �̂� = 𝐺𝜙(𝐸𝜃(𝑑𝑖𝑓𝑓(𝑥, �̂�)) contains the highlighted 

defect region and the black background. Since the defect with a soft boundary is 

detected at the pixel level, it is easy to give a bounding box covering the whole defect 

region, which is then cropped from 𝑥 and treated as the input of the next stage.  

3.3 Classification of Defect Types 

The classification of the defect type (CDT) is realized based on a simple CNN 

architecture as shown in Figure 5. The architecture of CDT owns a similar architecture 

as the encoder 𝐸𝜃 in IUR. There are additional two fully connected layers added after 

𝐸𝜃. One has 64 units, and another has two units 𝑍: {𝑧1, 𝑧2 }. The input is the cropped 

defect region on the rail image. With the number of channels doubled in each 

convolutional layer, the width and height of the feature maps are halved.  

 

Figure 5: (a) Training procedure of CDT. (b) Testing procedure of CDT. 

 

In the training procedure of CDT, the input is the cropped defect region, which is 

appropriately resized to 64 × 64 × 3. We exploit the cross-entropy loss as the loss 

function ℒ𝑐𝑙𝑎𝑠𝑠 in CM: 

 

𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒛)𝒊 =  
𝒆𝒛𝒊

∑ 𝒆𝒛𝒋𝑪
𝒋=𝟏

, (𝟖) 

ℒ𝑐𝑙𝑎𝑠𝑠 =  − ∑ 𝑘𝑖log (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖)

𝐶

𝑖=1

, (9) 

 

where 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒛) refer to the probabilities indicating different categories , 𝑪 is the 

number of classes (2 in our experiments), and 𝒌𝒊 is a ground-truth indicator for class 

𝒊. During the testing, by matching 𝒙 and �̂�, the detected region 𝒙𝒄𝒓𝒐𝒑 is fed into the 

well-trained classifier. The ultimate output is the category owning the highest 

probability: 

 
�̂� =  arg min

𝑖
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍) , (10) 

 

In brief, the test procedure of the three stages for RSDD is presented in Algorithm 

1. With the parameters optimized, the test sample 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 sequentially pass through 

the whole pipeline to finally get the segmentation map �̂�  and the categories 

𝐶: {𝑐0, 𝑐1, … , 𝑐𝐾} of different defects in each image. 

     

(a)                 (b) 

       

      
       

 

  

     



8 

 

Algorithm 1 Test procedure for RSDD. 

Input: Real image 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡, ground truth 𝑦 ∈ 𝑌𝑡𝑒𝑠𝑡 , three functions with trained parameters 

𝑖𝑑𝑒𝑛(), 𝑠𝑒𝑔(), and 𝑐𝑙𝑎(). 

Output: Segmentation map �̂� and the class of defects 𝐶. 

1.   �̂� =  𝑖𝑑𝑒𝑛(𝑥) 

2.   𝑠𝑐𝑜𝑟𝑒(𝑥, �̂�) = 𝔼𝑥,𝑥 ‖𝑓𝐸𝜃
(𝑥) − 𝑓𝐺𝜙

(�̂�)‖
1

 

3.   if 𝑠𝑐𝑜𝑟𝑒 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 

4.          𝑑𝑖𝑓𝑓(𝑥, �̂�) =  ‖𝑥 −  �̂�‖1 + ∑ ‖𝑓𝑖,𝐸𝜃
(𝑥) − 𝑓𝑖,𝐺𝜙

(�̂�)‖
2
 

5.          �̂� =  𝑠𝑒𝑔(𝑑𝑖𝑓𝑓(𝑥, �̂�)) 

6.          crop out the highlighted regions from 𝑥 as{𝑥𝑐𝑟𝑜𝑝
0 , 𝑥𝑐𝑟𝑜𝑝

1 , … , 𝑥𝑐𝑟𝑜𝑝
𝐾 } 

7.          for 𝑖 = 0,1, … , 𝐾 do 

8.                𝑐𝑖 = 𝑐𝑙𝑎(𝑥𝑐𝑟𝑜𝑝
𝑖 ) 

9.          end for 

10.          return �̂� and 𝐶: {𝑐0, 𝑐1, … , 𝑐𝐾} 

11.  end if 

 

 

 

4  Computational Experiments 
 

In this section, the computational experiments of the proposed framework for RSDD 

are conducted. Firstly, we introduce the dataset used in the experiments. Then, we 

report the evaluation metrics and training setup in the three stages. Finally, the results 

of each stage as well as the whole pipeline are collected.  

 

4.1 Rail Surface Dataset 

In our experiment, the dataset of rail images is sponsored by the Hong Kong Metro 

Corporation (MTR) and Beijing Jiaotong University. Since the raw images contain 

the rails and other components, such as the bolts and clips, we crop them to discard 

the unrelated areas outside the rails. In dataset 𝐷𝐻, there are 3490 healthy rail images 

collected by two cameras mounted on the train bottom. 𝐷𝐻  is divided into 𝐷𝐻
𝑡𝑟𝑎𝑖𝑛, 

𝐷𝐻
𝑣𝑎𝑙 , and 𝐷𝐻

𝑡𝑒𝑠𝑡with a ratio of 8:1:1 for the evaluation of the IUR stage. Besides, 

another dataset 𝐷𝑈𝐻 containing unhealthy rail images with different surface defects is 

also collected for the training and validation of SDR and CDT. 

Due to the rare occurrence of surface defects, we apply data augmentation 

technologies to overcome the limitation of the railway dataset itself and ensure the 

robustness of the three stages. Deformation, scaling, and gray value variations are the 

main methods for the data augmentation of unhealthy rails. As summarized in Table 

1, we have 2000 unhealthy rail images (𝐷𝑈𝐻
𝑡𝑟𝑎𝑖𝑛) utilized for training the SDR, 395 

images for validation (𝐷𝑈𝐻
𝑣𝑎𝑙), and 400 images for testing (𝐷𝑈𝐻

𝑡𝑒𝑠𝑡). IUR is evaluated 

with 𝐷𝑈𝐻
𝑣𝑎𝑙 + 𝐷𝑈𝐻

𝑣𝑎𝑙. SDR and CDT are evaluated alone with 𝐷𝑈𝐻
𝑣𝑎𝑙. At last, a test set 

𝐷𝑈𝐻
𝑡𝑒𝑠𝑡 + 𝐷𝑈𝐻

𝑡𝑒𝑠𝑡  is applied to assess the effectiveness and superiority of the whole 

pipeline. 
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Stage train validation test 

IUR 2792 744 / 

SDR 2000 395 / 

CDT 2000 395 / 

whole pipeline / 744 749 

Table 1: Image summary of three sets. 

 

In the training and testing process, width and height of the rail images are fixed to 

128. In the CDT stage, there are two types of surface defects, type-I and type-II, as 

shown in Figure 1. The type-I defect usually has a narrow and long shape, while the 

type-II defect owns a larger area and a more irregular contour than the type-I defect. 

Additionally, each sample in 𝐷𝑈𝐻  contains at least one defect. These defects may 

belong to different types. There are totally 579 type-I defects and 216 type-II defects 

in 𝐷𝑈𝐻
𝑣𝑎𝑙, 604 type-I defects and 225 type-II defects in 𝐷𝑈𝐻

𝑡𝑒𝑠𝑡.  

4.2 Evaluation Metrics 

Different metrics are exploited for various tasks in our proposed framework. Firstly, 

the IUR is evaluated at an image level. A set of common metrics based on 𝑒𝑛𝑐(𝑥, �̂�) 

are exploited including the area under the precision-recall curve (AUPRC) and area 

under receiver operating characteristic curve (AUROC). The equal error rate (EER) 

is another metric to evaluate IUR. It is a mathematical way of the trade-off between 

FP and FN. The optimal EER point is marked on the ROC curves in our experiments. 

 

The second stage SDR applies pixel-wise evaluation metrics, including pixel 

accuracy (PA) and intersection over union (IoU). However, in the ground truth map 

of anamalous image, most of the pixels are black, representing background, while the 

defect region occupies only a small area. In this case, we specially record the average 

pixel accuracy (APA) to balance the segmentation capability on both defect region 

and background. In our RSDD task, the IoU of the image is calculated only on the 

class of defect (DIoU).  

 

During the CDT stage, the confusion matrix of the two types of defects is applied. 

Accuracy, precision, recall, and F1-score values can also be calculated with the 

confusion matrix. If not specified, all above metrics, except for EER, are reported as 

percentages to provide a fair comparison. During testing, the whole pipeline works in 

precisely the same manner as during the training stage. Besides, the speed of each 

stage and the entire framework during testing is recorded in terms of average time 

(ms). 

4.3 Training Setup 

The first stage IUR is trained with a semi-supervised approach that only healthy rails 

are fed into the network. It is optimized based on ℒ𝑖𝑑𝑒𝑛𝑡 ,  using AdamW with 

momentums β1 =  0.5, β2 =  0.99 , while the initial learning rate is set to 𝑙𝑟 =
10−3. Experiments are conducted with three NVIDIA GeForce RTX 2080 GPUs. The 

batch size of each training iteration is 18 with each GPU assigned to process 6 images. 

The whole training schedule is empirically set to 200 epochs to yield optimal results. 
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We keep the initial learning rate for the first 100 epochs and linearly decay it to zero 

in the next 100 epochs. 

 

The SDR stage employs supervised training to feed the ground truth labels and rail 

images into the network. The discriminator 𝐺𝜙 and the AE part are locked into fierce 

competition. They are trained in alternating steps, following the objective in (7). The 

iteration of 𝐷𝜔 is set to three for each iteration of AE architecture to make sure 𝐷𝜔 not 

win early in the competition, and the gradient will not vanish. SGD optimizer is used 

in the training process with an initial learning rate  𝑙𝑟 = 2𝑒 − 4. After the parameters 

of 𝐷𝜔 are updated, their values will be truncated to between -0.01 and 0.01 to prevent 

the loss value from rising continuously. With the same three NVIDIA GeForce RTX 

2080 GPUs, SDR owns a batch size of 24, trained for 200 epochs. 

 

Finally, CDT adopts supervised training as well and utilizes Adam as the optimizer 

with a learning rate of 10−4. The categorical cross-entropy ℒ𝑐𝑙𝑎𝑠𝑠 is exploited as loss 

function. The whole training schedule is set to 200 epochs. Batch size is fixed to 24 

with each GPU assigned to process 8 images.  

4.4 Results and Analysis 

In this section, the experimental evaluation of the proposed framework is conducted. 

Each stage is validated using the image sets divided in Table 1. First, we compare the 

identification performance with four different choices of the match function 𝑀 ∈
{𝐿1, 𝐿2, 𝑏𝑜𝑡𝑡𝑙𝑒(𝑥, �̂�), 𝑒𝑛𝑐(𝑥, �̂�)}. 𝐿1 and 𝐿2 denotes the L1 distance and L2 distance 

between 𝑥  and �̂� , respectively. 𝑏𝑜𝑡𝑡𝑙𝑒(𝑥, �̂�)  denotes the bottleneck features [29]. 

Table 2 summarizes the validation results of different defect scores. 𝑏𝑜𝑡𝑡𝑙𝑒(𝑥, �̂�) and 

 𝑒𝑛𝑐(𝑥, �̂�) show close performance on the validation set while the L1 and L2 residuals 

have significantly worse performances than other two indicators. The encoded 

indicator 𝑒𝑛𝑐(𝑥, �̂�) shows its superiority in the architecture of IUR.  
 

Score AUPRC AUROC EER Time(ms) 

𝐿1 94.69 93.60 0.15 6.15 

𝐿2 96.18 95.74 0.11 6.15 

𝑏𝑜𝑡𝑡𝑙𝑒(𝑥, �̂�) 97.35 96.92 0.09 6.15 

𝑒𝑛𝑐(𝑥, �̂�) 97.67 97.43 0.09 6.15 

Table 2: Validation performance of four score methods. 

 

Next, the PR curve and ROC curve from the validation and testing process of IUR 

are displayed in Figure 6(a-b), in which the validation results and test results are close. 

The AUPRC values are generally higher than AUROC because there are more 

unhealthy samples than healthy rails in 𝐷𝑈𝐻
𝑣𝑎𝑙 + 𝐷𝐻

𝑣𝑎𝑙 (395 vs. 349) and 𝐷𝑈𝐻
𝑡𝑒𝑠𝑡 + 𝐷𝐻

𝑡𝑒𝑠𝑡 

(400 vs. 349). Figure 6 indicates that the IUR stage is capable of easily identifying the 

unhealthy rails the healthy ones. As the unhealthy rail is decided according to 

𝑒𝑛𝑐(𝑥, �̂�), a valid threshold in Algorithm 1 is required to activate the next stage during 

testing. Figure 6(c) shows the decision process of the score threshold. As the threshold 

increases, metrics including the F1-score and accuracy rise first and then fall, reaching 

their maximum values when the threshold equals 0.17. Thus, test rail images with 
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𝑒𝑛𝑐(𝑥, �̂�) greater than 0.17 will be identified as unhealthy, and the SDR is activated 

simultaneously. 

Figure 6: Evaluation of IUR. (a) AUPRC. (b) AUROC and EER. (c) Decision 

process of the threshold based on 𝑒𝑛𝑐(𝑥, �̂�). 

 

The design of SDR for developing the segmentation results is discussed in Figure 

7. We compare the generic AE backbone and the U-net backbone, which allows low-

level information from 𝐸𝜃  to shortcut across the network on the surface defect 

segmentation. The same discriminator 𝐷𝜔 is cascaded at the end of both U-net and 

AE to ensure a fair comparison. Figure 7 demonstrates that a simple AE is easy to 

ignore the small defect areas and detect them as background (black). The advantages 

of the U-net appear not to be specific to type-II defects that are larger and more 

irregular. However, when there are type-I defects with small sizes, the U-net again 

achieves the superior results. These observations are quantified using the accuracies 

and DIoU as in Table 3. As mentioned in Section 4.2, we focus on not only the PA on 

the image (which is imbalanced), the APA on both background and defect can reflect 

the segmentation effect of pixels belonging to defects more intuitively. Table 3 shows 

that the three metrics vary a lot in both the validation set and test set. It is reduced by 

almost 20% compared with the PA on image level when calculating the APA. The 

DIoU reaches a middle value between PA and APA, indicating that the DIoU can be 

treated as a balanced measurement between the two accuracies. The U-net achieve 

higher values for both APA and DIoU, revealing that the concatenation between 𝐸𝜃 

and 𝐺𝜙  in SDR generator enhances producing nearly the accurate segmentation 

regardless of input defect type.  

 
Figure 7: Segmentation performance of AE and U-Net. 

     
(a)          (b)          (c) 
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Backbone Image sets PA APA DIoU Time(ms) 

Autoencoder 
𝑫𝑼𝑯

𝒗𝒂𝒍 91.44 73.86 80.26 
6.94 

𝑫𝑼𝑯
𝒕𝒆𝒔𝒕 + 𝑫𝑯

𝒕𝒆𝒔𝒕 90.28 69.01 75.94 

U-net 
𝑫𝒂𝒏𝒐𝒎

𝒗𝒂𝒍  97.39 79.53 85.68 
10.36 

𝑫𝑼𝑯
𝒕𝒆𝒔𝒕 + 𝑫𝑯

𝒕𝒆𝒔𝒕 96.76 74.82 80.37 

Table 3: Segmentation results on different image sets. 

 

Table 4 summarizes the classification results when CDT is validated alone with 

𝐷𝑈𝐻
𝑣𝑎𝑙 as well as when tested in the whole pipeline with 𝐷𝑈𝐻

𝑡𝑒𝑠𝑡 + 𝐷𝐻
𝑡𝑒𝑠𝑡. Generally, the 

precision of type-II defects is much smaller than the type-I value indicating that our 

classifier is easier to misclassify the type-I defects as type-II. In testing, the number 

of overall classifications is slightly less than the number of defects in 𝐷𝐻
𝑡𝑒𝑠𝑡 because 

of the influence of the previous stages. Nevertheless, the testing performance is still 

comparable to the validation results.  
 

Actual 
Predicted 

Precision Recall F1-score Time(ms) 
type-I type-II 

 𝑫𝑼𝑯
𝒗𝒂𝒍   

type-I 566 13 99.30 97.75 98.52 

1.02 
type-II 4 212 94.22 98.15 96.14 

Accuracy 
/ 

/ / 97.86 

Average 96.76 97.95 97.35 

 𝑫𝑼𝑯
𝒕𝒆𝒔𝒕 + 𝑫𝑯

𝒕𝒆𝒔𝒕     

type-I 588 10 99.16 97.35 98.25 

1.28 
type-II 5 213 95.52 94.67 95.09 

Accuracy 
/ 

/ / 96.62 

Average 97.34 96.01 96.67 

Table 4: Classification results on different image sets. 

 

Finally, to validate the applicability of the proposed framework, comparative 

experiments are conducted with a new dataset 𝐷𝑠𝑦𝑛. Since there are few public rail 

datasets about the defect inspection, we synthesize the unhealthy rails in 𝐷𝑠𝑦𝑛  by 

copy-pasting [30] the defect regions of type-I and type-II to the 𝐷𝐻  as well as 

synthesize the healthy rails in 𝐷𝑠𝑦𝑛 by removing the defects area in 𝐷𝑈𝐻. Moreover, 

the number of defects in 𝐷𝑠𝑦𝑛 is increased with more than one paste. Figure 8 shows 

some examples of the synthesized images in 𝐷𝑠𝑦𝑛 . We divide the 𝐷𝑠𝑦𝑛  into 𝐷𝑠𝑦𝑛
𝑣𝑎𝑙  

containing 205 unhealthy rails with totally 630 defects and 𝐷𝑠𝑦𝑛
𝑡𝑒𝑠𝑡  containing 231 

unhealthy rails with totally 674 defects. Table 5 displays the validation results and test 

results of the proposed framework on two datasets. With more defects, the unhealthy 

rails are more accessible to recognize according to the performance of IUR stage. The 

new dataset also owns better segmentation and classification performance with more 

frequent defects. Overall, the framework is able to run all stages at the same time at 

19.30ms. Tests have been carried on a PC with an Intel i7-8700 and an NVIDIA 

GeForce RTX 2080 GPU. Results in Table 5 demonstrate that the proposed 

framework can deal with various targets in the RSDD scenarios.  
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Figure 8: (a) Healthy rails in 𝐷𝑠𝑦𝑛 and (b) Unhealthy samples in 𝐷𝑠𝑦𝑛. 

 
 

Image sets 
Identification Segmentation Classification Time(ms) 

AUPRC AUROC APA DIoU type-I type-II 

𝑫𝑼𝑯
𝒗𝒂𝒍 + 𝑫𝑯

𝒗𝒂𝒍 97.67 97.43 72.60 79.21 96.84 94.90 
19.30 

𝑫𝑼𝑯
𝒕𝒆𝒔𝒕 + 𝑫𝑯

𝒕𝒆𝒔𝒕 98.20 98.07 74.82 80.37 98.25 95.09 

𝑫𝒔𝒚𝒏
𝒗𝒂𝒍  99.17 99.05 79.31 87.00 98.04 96.83 

20.07 
𝑫𝒔𝒚𝒏

𝒕𝒆𝒔𝒕 99.86 99.60 80.77 88.45 98.95 98.02 

Table 5: Performance of the whole pipeline based on two datasets. 

 
 

5  Conclusions 
 

We presented a unified framework in this paper for addressing multiple analytical 

functions in RSDD. The framework was composed of three sequential stages, such as 

the IUR, SDR, and CDT. Each of the stages was developed with deep learning 

architecture. The effectiveness of each stage was validated through computational 

experiments. We also synthesized a new dataset to confirm the applicability of the 

proposed framework. The performance on the new dataset demonstrated that the 

framework was capable of dealing with various targets in more complex RSDD 

scenarios.  
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