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Abstract 

In the process of long-term operation of the railway, rail corrugation seriously affects 

the safe operation of vehicles and greatly increases the maintenance costs, so it is very 

necessary to know the degree of rail corrugation in advance. A wavelet packet time-

convolutional neural network is proposed to detect micrometer-scale rail corrugation 

by using car body acceleration, which is a low-cost and fast detection method. By 

taking the car body acceleration as input, the recognition accuracy of wavelet packet 

time-convolutional neural network for micron-scale rail corrugation at different 

wavelengths and amplitudes is compared. The results show that there is strong 

robustness, superiority of the wavelet packet time-convolutional neural network. The 

recognition accuracy of the method is 96.60% ~ 99.10% at different wavelengths and 

95.40% ~ 100% at different amplitudes, which is a great improvement compared with 

the traditional model. 
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1 Introduction 

Rail corrugation is a kind of common track disease in high-speed railway [1,2], as 

shown in Figure 1. Rail corrugation is one of the main causes of increased vibration 

of the wheel-rail system, which seriously affects the safety of high-speed railway 

operation and the comfort of passengers [3,4]. It is necessary to carry out regular 

grinding of the rail corrugation section, and it is especially important to know whether 

there is rail corrugation accurately before grinding. Therefore, how to accurately and 

efficiently detect rail corrugation is a crucial subject. 

 

Figure 1: Rail corrugation characteristic diagram.  

According to the different principles of rail corrugation detection, it mainly 

includes the following methods: manual detection method, string measurement 

method, inertial reference method, machine vision method. The manual detection 

method requires public works inspectors to use the rail corrugation inspection ruler 

[5-7] or rail corrugation inspection trolley [6] to measure the rail corrugation on site, 

which is inefficient and not applicable to the large-scale detection of the rail 

corrugation. The string measurement method adopts the moving coordinate system 

based on the rail, due to the measurement of the reference frame of reference with the 

rail height of the uneven changes in the state of change, resulting in the transfer 

function (the ratio of the measured value to the actual value) is not constant to 1, 

resulting in the inevitable error in the measurement of the rail corrugation[7-9]. The 

inertial reference method characterizes the rail corrugation through the quadratic 

integration of axle box acceleration, and the wheel state will interfere with the axle 

box acceleration, so it is impossible to exclude the influence of wheel faults, and due 

to the use of high-pass filter, the measurement error is relatively large when the vehicle 

speed is low [10,11]. The machine vision method requires high-precision 

optoelectronic and camera equipment as well as complex image post-processing 

techniques, and although the measurement accuracy is high, its application cost is 

expensive[12-15]. 

Due to the direct contact between wheels and rails, the appearance of rail 
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corrugation will cause the vehicle system to produce an obvious dynamic response. 

Therefore, based on the dynamic response of the vehicle, rail corrugation detection 

has also been the attention of many experts and scholars. Sunaga et al. [16] proposed 

that the probability density function of axle box acceleration follows the principle of 

lognormal distribution. Potter et al. [17] pointed out that the axle box acceleration 

detection equipment installed in the ordinary operation of the train is relatively easy 

to operate, the maintenance is also relatively convenient, and at the same time, 

relatively economic and practical as an auxiliary means of judging the rail corrugation, 

has great advantages. Hou et al. [18] proposed the use of fuzzy approximation theory 

can be realized on the prediction of rail corrugation. Roppongi et al. [19] proposed a 

use of axle box vertical acceleration detection of rail corrugation, gives the range of 

filtering bands, and realize the positioning of rail corrugation. 

Existing studies have mostly used the vibration response of car body components 

(mostly axle box acceleration) to differentiate between corrugated rail and normal rail. 

However, the installation location of acceleration sensors on the axle box is limited, 

and the current installation of axle box acceleration detection train is relatively small, 

resulting in greater difficulty in acquiring axle box acceleration data. Whereas 

vibration sensors have more mountable positions in the carriages and are more 

convenient to install, the data acquisition of car body vibration is relatively easier. 

In an effort to address these identified gaps, a wavelet packet time-convolutional 

neural network (WPTCN) is proposed to detect rail corrugation by using car body 

acceleration, which is a low-cost and fast detection method. The results of this paper 

can provide a reference for the detection and assessment of the early stages of rail 

corrugation, thus helping the public works personnel to scientifically formulate the 

rail corrugation management programme to ensure the long-term safe operation of 

high-speed railways. 

2 Methods 

2.1 Wavelet packet time-convolutional neural network 

Based on the vehicle-track coupling dynamics model, the original irregularity is 

generated according to the German low power spectrum, and the vehicle response is 

extracted after superimposing different types of micrometer-scale rail corrugation 

irregularity. 

Compared with the German low power spectrum, the amplitude of micron-scale 

corrugation is smaller, and the frequency band of influence on the vehicle body 

response is higher. Therefore, the wavelet packet transform is added to the front end 

of the time convolution neural network to preprocess the input data, and the trend term 

caused by the German low power spectrum in the vehicle response is eliminated, so 

that the reconstructed vehicle response can reflect the influence of rail corrugation and 

better adapt to the recognition effect of the time convolution neural network on the 
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rail corrugation amplitude. The original vehicle response is input into the WPTCN 

network, the S1 signal is eliminated, and the S2 ~ S4 signal is reconstructed to form a 

new signal as input. 

WPTCN combines wavelet packet decomposition and reconstruction with time 

convolution neural network. The Temporal Convolutional Network (TCN) structure 

consists of two core components: dilated causal convolution and residual blocks. The 

dilated causal convolution utilizes the dilation factor d (d=2l-1, where l is the dilation 

rate) to enable the interval sampling of input rail vibration features, as illustrated in 

Figure 2. In this way, dilated causal convolution enables the use of fewer 

convolutional layers while achieving a larger receptive field, allowing for capturing 

more extensive temporal information of the vehicle acceleration.  

Each residual block contains two dilated convolution layers, but dilation is only 

applied once. In the residual block structure, weight normalization can accelerate the 

network's running speed and enhance the robustness of the network. The spatial 

dropout factor allows the network to randomly drop neural network units with a 

certain probability during training to prevent overfitting. The activation function 

choice of ReLU increases the network's nonlinearity, enhances its expressive power, 

prevents gradient vanishing, and makes the network sparse. The 1×1 convolutional 

block allows the network to have the ability to transmit information across layers. The 

process is shown in Figure 3. 

The WPTCN network consists of three different types of residual blocks. The basic 

structure of each residual block is composed of two convolutional layers, two pooling 

layers and a residual connection. The size of the convolution kernel in each residual 

block is 3×1, and the number of convolution kernels is 64. Both pooling layers adopt 

maximum pooling, with sizes of 4×1 and 2×1, respectively. The expansion 

coefficients of the three residual blocks are 1, 2 and 4, respectively. The reconstructed 

vehicle acceleration signal enters the fully connected layer after three residual blocks, 

and is classified by the softmax function. 

 

 

 

Figure 2: Time convolutional neural network hierarchy diagram. 
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Figure 3: Schematic diagram of micrometer-scale rail corrugation recognition based 

on WPTCN. 

 

2.2 Vehicle-track dynamic model 

 

The vehicle-track dynamic model developed in this paper makes the following 

assumptions: each component is regarded as a rigid body, the vehicle model is mainly 

composed of wheel pairs, bogies and car body, etc. The front and rear bogies have the 

same structure, and in the bogie model, the front and rear wheel pairs parameters are 

identical. The elastic deformation of each component is ignored in the model, which 

is regarded as a multi-rigid body vibration system. 

For the vehicle model, the spring damping element is used to simulate the 

suspension connection between the bogie and the wheelset, the body and the bogie, 

and the damping force element is used to simulate the transverse and vertical shock 

absorbers by taking the damping and stiffness in the vertical, transverse and 

longitudinal directions into consideration as shown in Figure 4. When modeling, the 

body and bogie are considered to have 5 degrees of freedom and 4 degrees of freedom 

of the wheelset, with a total of 31 degrees of freedom for the whole vehicle. The 

detailed parameters of the vehicle are shown in Table 1. 
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Parameters Value Parameters Value 

Car body mass (kg) 
3.376 

× 104 

Longitudinal stiffness of primary 

spring (N/m) 

9.800 

× 105 

The rolling moment of inertia of 

the car body (kg·m2) 

1.094 

× 105 

Lateral stiffness of primary 

spring (N/m) 

9.800 

× 105 

The nodding moment of inertia of 

the car body (kg·m2) 

1.655 

× 106 

Vertical stiffness of primary 

spring (N/m) 

1.176 

× 106 

The yawing moment of inertia of 

the car body (kg·m2) 

1.561 

× 106 

Vertical damping of primary 

spring (N·s/m) 

1.000 

× 104 

Bogie frame mass (kg) 
2.400 

× 103 

Longitudinal stiffness of 

secondary spring (N/m) 

1.600 

× 105 

The rolling moment of inertia of 

the bogie (kg·m2) 

1.944 

× 103 

Lateral stiffness of secondary 

spring (N/m) 

1.600 

× 105 

The nodding moment of inertia of 

the bogie (kg·m2) 

1.314 

× 103 

Vertical stiffness of secondary 

spring (N/m) 

2.400 

× 105 

The yawing moment of inertia of 

the bogie (kg·m2) 

2.400 

× 103 

Lateral damping of secondary 

spring (N·s/m) 

4.000 

× 104 

Wheelset mass (kg) 
1.850 

× 103 

Vertical damping of secondary 

spring (N·s/m) 

2.000 

× 104 

The rolling moment of inertia of 

the wheelset (kg·m2) 

0.967 

× 103 

Nominal rolling radius of the 

wheel (m) 
0.43 

The nodding moment of inertia of 

the wheelset (kg·m2) 

0.123 

× 103 

Distance between the mass 

centers of the bogies (m) 
17.50 

The yawing moment of inertia of 

the wheelset (kg·m2) 

0.967 

× 103 
Distance of bogie fixed axles (m) 2.50 

Table 1: Vehicle parameters. 

 
Figure 4: Vehicle-track model. 
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3 Results 

3.1 Robustness of WPTCN 

 

The reconstructed car body acceleration signals under a certain amplitude and 

wavelength rail corrugation excitation are divided into 200 groups according to the 

ratio of training set, verification set and test set of 8:1:1, and the robustness of WPTCN 

is studied. 

To comprehensively compare the influence of amplitude and wavelength on the 

recognition accuracy of WPTCN, the average recognition accuracy of the same 

amplitude at different wavelengths is calculated firstly. The confusion matrix of the 

WPTCN is shown in Figure 5. When the amplitude is 0 μm and the wavelengths are 

60 mm, 80 mm, 100 mm, 120 mm, 140 mm and 160 mm, the recognition accuracy of 

WPTCN network is 93.1 %, 100 %, 100 %, 93.1 %, 96.6 % and 100 %, respectively. 

The average recognition accuracy can be calculated as follows : 

(100%×3+93.1%×2+96.6%)/6=97.1%. 

According to the above method, the recognition accuracy of WPTCN is calculated, 

as shown in Figure 6(a). With the change of amplitude, the accuracy does not change 

regularly. The reason is that in the process of recognition, the WPTCN compares the 

probability that this type of amplitude is identified as other amplitudes. Under the 

influence of adjacent amplitudes, the signal change of vehicle body response itself is 

small. Therefore, the recognition accuracy fluctuates and there is no regularity. 

However, the recognition accuracy of WPTCN for different amplitudes is more than 

95.4 %, and the effect is remarkable. 

The average recognition accuracy of the same wavelength at different amplitudes 

is further calculated. Taking the recognition effect at 60mm wavelength as an example, 

the recognition rates of 0μm ~ 10μm are 93.1 %, 100 %, 100 %, 96.6 %, 100 %, 100 %, 

100 %, 100 %, 100 % and 100 %, respectively. In the case of a wavelength of 60 mm, 

the average recognition accuracy can be calculated as follows : 

(100%×9+96.6%+93.1%)/11=99.1%. 

 

 

According to the above method, the recognition accuracy of WPTCN is calculated, 

as shown in Figure 6(b). With the increase of wavelength, the recognition accuracy of 

WPTCN decreases slightly, which indicates that the increase of wavelength will lead 

to the decrease of the influence of rail corrugation on the response of the car body, so 

that the difference between the responses of each car body under different amplitudes 

is reduced, and the difficulty of WPTCN capturing small fluctuations is increased, 

which is more difficult to recognize. However, the recognition accuracy of WPTCN 

for rail corrugation amplitude under different wavelengths is above 96.6 %, indicating 

that WPTCN has excellent effect on the recognition of micron-scale rail corrugation. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5: The recognition effect of WPTCN on micrometer-scale rail corrugation; 

(a) 60mm; (b) 80mm; (c)100mm; (d)120mm; (e)140mm; (f)160mm. 

 

 

(a)                               (b)               

Figure 6: Robustness of WPTCN; (a) Different amplitudes of rail corrugation; (b) 

Different wavelengths of rail corrugation. 

 

3.2 Superiority of WPTCN 

 

To further illustrate the superiority of the WPTCN in micrometer-scale rail 

corrugation recognition, it is compared with Long Short Term (LSTM)[20], Gate 

Recurrent Unit (GRU)[21], K-Nearest Neighbor (KNN)[22] and Naive Bayesian 

(NB)[23]. 

The recognition accuracy of different models for rail corrugation amplitude at 

different wavelengths is shown in Table 2 and Figure 7. It can be seen that the accuracy 
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of WPTCN is between 96.6 % and 99.1 %, the accuracy of LSTM is between 55.7 % 

and 82.9 %, and the accuracy of GRU is between 41.1 % and 72.8 %. The accuracy 

of KNN is between 13.9 % and 29.8 %, while the accuracy of NB is between 11.9 % 

and 30.4 %. The KNN and NB models have very low ability to recognize micron-

scale rail corrugation. The accuracy of LSTM and GRU models can reach up to 82.9 %, 

which is significantly better than that of KNN and NB. The recognition accuracy of 

the WPTCN is up to 99.1%, and that of the traditional model is up to 82.9%. Thus the 

recognition accuracy of WPTCN is 16.2% higher than the traditional model. 

 

Rail corrugation wavelength 

value (mm) 
WPTCN LSTM GRU KNN NB 

60 99.10% 82.90% 72.80% 29.80% 30.40% 

80 98.70% 79.10% 68.40% 28.50% 26.00% 

100 97.80% 68.40% 58.90% 21.52% 25.30% 

120 97.50% 63.30% 55.70% 19.60% 17.70% 

140 97.20% 59.50% 50.60% 16.50% 14.60% 

160 96.60% 55.70% 41.10% 13.90% 11.90% 

Table 2: Recognition accuracy at different rail corrugation wavelengths. 

 

 

 

Figure 7: Recognition accuracy at different rail corrugation wavelengths. 

 

On the other hand, the recognition accuracy of different models is affected by 

wavelength. It can be seen that the accuracy of WPTCN, LSTM, GRU, KNN and NB 

decreases with the change of wavelength. When the wavelength increases from 60 

mm to 160 mm, the accuracy is reduced by 2.5 %, 27.2 %, 31.7 %, 15.9 % and 18.5 %, 

respectively. The recognition accuracy of KNN and NB is low. Therefore, with the 

decrease of wavelength, the decrease of recognition accuracy is less than that of 

LSTM and GRU models. The accuracy of the LSTM and GRU models can be reduced 
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by up to 31.7 %, which is greatly affected by the wavelength. It shows that the 

traditional deep learning model is difficult to adapt to the gradual reduction of the car 

body response caused by the change of wavelength when perceiving the influence of 

micrometer-scale rail corrugation on the car body response. WPTCN solves this 

problem well. Whether it is short-wavelength rail corrugation or long-wavelength rail 

corrugation, its perception of rail corrugation amplitude is at a high level. 

 

 

 

To comprehensively compare the recognition capability of different models on the 

amplitude, the recognition accuracy of different models for a single amplitude is 

calculated, as shown in Table 3 and Figure 8. When the amplitude is 0μm, the 

recognition accuracy of the WPTCN can reach 97.1 %, which is 62.4 % higher than 

that of the other four models. When the amplitude is 1μm, the recognition accuracy of 

the WPTCN network is 97.1 %, which is 75.7 % higher than that of the other four 

models. When the amplitude is 2μm, the recognition accuracy of the WPTCN network 

is 96.6 %, which is 58.8 % higher than the other four models. When the amplitude is 

3μm, the recognition accuracy of the WPTCN network is 96.0 %, which is 38.5 % 

higher than the other four models. It can be seen that the traditional model has a better 

capability in identifying the rail corrugation with the amplitude is 10μm, but the 

recognition accuracy is unstable when the amplitude is small. However, the WPTCN 

can guarantee the recognition accuracy of micrometer-scale rail corrugation when the 

amplitude is small. Therefore, compared with the traditional model, the WPTCN has 

greatly improved the recognition accuracy of micrometer-scale rail corrugation. 

 

 

Rail corrugation amplitude 

value (μm) 
WPTCN LSTM GRU KNN NB 

0 97.10% 33.10% 34.70% 21.70% 22.10% 

1 97.10% 21.40% 9.30% 13.60% 25.20% 

2 96.60% 37.80% 5.50% 11.50% 5.40% 

3 96.00% 57.50% 34.30% 5.60% 4.20% 

4 95.40% 73.30% 59.00% 9.20% 3.90% 

5 96.00% 89.70% 57.40% 19.40% 17.00% 

6 98.30% 83.10% 69.10% 21.70% 20.50% 

7 100.00% 99.00% 87.10% 16.90% 24.60% 

8 100.00% 100.00% 90.40% 29.50% 28.20% 

9 99.40% 90.20% 93.70% 6.00% 13.40% 

10 99.40% 100.00% 96.90% 97.60% 86.30% 

Table 3: Recognition accuracy at different rail corrugation amplitudes. 
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Figure 8: Recognition accuracy at different rail corrugation amplitudes 

4 Conclusions and Contributions 

In this study, a wavelet packet time-convolutional neural network (WPTCN) is 

proposed to detect micrometer-scale rail corrugation by using car body acceleration, 

which is a low-cost and fast detection method, and the robustness, superiority of 

WPTCN are demonstrated.  

The car body acceleration is decomposed by wavelet packet.The S1 component 

mainly represents the influence of the German low interference spectrum on the car 

body acceleration, and the high-frequency vibration of the rail corrugation on the car 

body acceleration has a large influence, which is mainly embodied in S2~S4. 

Therefore, S2~S4 are utilised to reconstruct the car body acceleration as an input to 

the WPTCN. 

The WPTCN has a high recognition accuracy for micron-scale rail corrugation 

abrasion of different wavelengths and amplitudes, which indicates good robustness. 

The recognition accuracy of WPTCN is 96.60% ~ 99.10% at different wavelengths 

and 95.40% ~ 100% at different amplitudes, which is a great improvement compared 

with the traditional model, which indicates its superiority. 

The contributions of this paper can provide a reference for the detection and 

assessment of the early stages of rail corrugation, thus helping the public works 

personnel to scientifically formulate the rail corrugation management programme to 

ensure the long-term safe operation of high-speed railways. 
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