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Abstract 
 

This article presents a data-driven model based on the Markov decision process 

approach applied to freight train wheelsets to provide a way to support a condition-

based maintenance for freight wheelsets. This study analyses observed wear data of 

freight wheelsets and developed a Markov decision process model. A comparison 

between key operating variables is also analysed namely the mileage since last 

maintenance and the gross ton mileage since last maintenance to determine which 

parameter is more appropriate for developing a two-dimensional state space along 

with wheel tread diameter. A Markov transition matrices are estimated for various 

actions, and an optimal strategy is provided, with a decision map for the best actions 

depending on the current state of the wheelset. 
  
Keywords: railway maintenance, Markov decision process, wheelsets, maintenance 

modelling, condition-based maintenance, cox proportional hazard model, damage 
 

1  Introduction 
 

The demand for railway transportation has experienced a notable surge over the past 

decade, propelled by diverse factors such as economic expansion, persistent traffic 

congestion, and growing environmental considerations[1]. Addressing the growing 

need for efficient passenger and freight transportation is imperative, with a 

simultaneous emphasis on reducing dependence on fossil fuels. Railway infrastructure 
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managers are tasked with bolstering reliability and minimizing assets’ lifelong costs, 

mainly by diminishing maintenance expenses. To meet escalating demands, managers 

must focus on enhancing the reliability of both infrastructure and rolling stock assets, 

while concurrently reducing the overall life-cycle expenses, primarily through a 

strategic maintenance approach catering to the needs of passengers and railway 

companies[2].  

 

 

    The maintenance of the railway industry is a relevant field from both an economic 

and environmental perspective due to the substantial capital investment required and 

the lower emission of CO2[3]. Trains are more environmentally friendly than other 

modes of transport, and they only emit 1 % of transport emissions including passenger 

and cargo trains[4]. Hence, the maintenance of the railway industry is necessary to 

provide an effective mode of transportation for passengers and goods.  

The railway wheel plays a pivotal role in modern rail vehicle systems, facilitating 

smooth navigation around curves, preserving track alignment, and enhancing 

passenger comfort while mitigating the risk of derailments. Among the various train 

components, it is particularly susceptible to wear and tear[5].Wheelsets are subjected 

to re-profiling or replacement to maintain optimal performance due to factors like 

flange and tread wear, tread peeling, and tread flats, among other criteria. The rail 

industry commonly employs a periodic maintenance practices, or replace them after 

a specific operational period or predetermined mileage. However, this approach 

results in material waste and increased maintenance expenses[6]. 

A recent survey highlights the significance of attaining higher safety standards 

while minimizing maintenance expenses. Ongoing research in this field 

predominantly concentrates on improving preventive and condition-based 

maintenance strategies, with the existing literature on railway wheels mainly 

consisting of methodologies related to preventive or condition-based maintenance[7]. 

Numerous models discussed in current literature can be applied to forecast the 

degradation of a wheel’s profile. Recent methodologies encompass systematic models 

integrated with vehicle dynamics[8], [9], [10]. 

 

 

Shebani and Iwnicki[11] employ autoregressive models with external input neural 

networks to predict wheel and rail wear across various contact conditions. The results 

of experimental tests indicate that artificial neural networks offer more precise wear 

predictions, achieving 80% and higher model accuracy rates. Recently, a data-driven 

approach has been adopted to monitor the health and estimate wear of train wheels. 

Tianli et al.[12] suggested a framework that utilizes group profile data and multi-

dimensional health indicators, along with regression techniques such as principal 

component analysis, hilbert-haung transform, and logistic regression to investigate the 

health status of high-speed rail wheels. Chi et al.[13] assessed the reliability of high-

speed rail wheels by developing multi-state data driven models using actual 

operational data analysis. 
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    There are ongoing efforts to enhance maintenance strategies for passenger train 

wheelsets. Lin et al.[14],[15] studied the reliability of locomotive wheelsets using  

Bayesian survival analysis and explored their degradation with classical and Bayesian 

approaches. Liu et al.[16] developed a dynamic maintenance strategy  for locomotive 

wheelsets, focusing on system reliability and cost-effective maintenance. However, 

freight train maintenance research is limited due to inadequate freight data 

traceability. Zhang et al.[17] analysed the freight wheelset repair data using Weibull 

and Birnbaum-Saunders distributions, which were performed to study reliability 

curves and their characteristics. Shi et al.[18] proposed an opportunity-based 

centralised maintenance strategy based on the wheelsets remaining useful life(RUL) 

prediction. Hence, improving freight train maintenance strategies is essential to 

enhance reliability, prolong component lifecycle, and reduce maintenance 

expenditures. This enhancement is essential as freight trains play a vital role in the 

EU market, providing efficient bulk transportation of goods at lower costs than air and 

road alternatives[19]. 

 

    This study employs a Markov decision process (MDP) approach to provide an 

optimal strategy with a decision map for the best actions depending on the current 

state of the wheelset using observed wear data of freight wheelsets. The paper is 

structured as follows: Section 1 introduces statistical models used in wheelset 

maintenance and explains the importance of such maintenance for freight trains. 

Section 2 elaborates on the Markov decision process, whereas Section 3 discusses the 

application of the Markov decision process in the context of freight trains and presents 

the problem description; Section 4 presents the optimal policy for freight wheelset 

maintenance; and the final section provides conclusions and outlines avenues for 

future research. 

 

 

2  Markov Decision Process 
 

An MDP is a mathematical framework that model decision-making in discrete, 

stochastic, and sequential environments. States, actions, transition probabilities, 

rewards and a discount factor characterize it[20].   

    A stochastic process, denoted by a sequence of states  {Xn = 0,1, … , N}, forms a 

Markov chain with transition probabilities pi,j. In each state i, a selection is made from 

the potential set of states s ∈ {s1, s2, … , sN} ;  and an action is chosen form the optimal 

set of actions a ∈ {a1, a2, … , aM} and a set of decision epochs t ∈ {1,2, … , T}. For a 

given current state Xn = i and an action  an = a, then Markov property can be 

expressed by equation (1) as follows: 

                                           P(Xn+1 = j|Xn = i, an = a) = pi,j(a)                            (1) 

     According to Markovian property, the transition probabilities depend only on the 

present state and action. They are non-negative, and within a range of 0 ≤ pi,j ≤ 1, 

with the sum of probabilities for all possible transitions must be 1, and it is shown by 

equation (2) that is, 

                                 ∑ pi,j
sN
j=0 (a) = 1,      i = 0,1, … , sN                                         (2) 
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    For a specific action a ,the transition matrix denoted as P(a).The n-step transition 

probabilities matrix for a given action can be easily computed by raising the matrix 

P(a) to the power of n is expressed by equation (3) as follows:                                               

                                              Xn = X0 × Pn(a)                                                     (3) 

    In an MDP framework, the key objective is to find actions that optimize the total or 

average reward/ cost across feasible solutions for each state. This leads to optimal 

policy[20].The optimal expected discounted cost for state i is represented by equation 

(4) is as follows:     

     

   v(i) =  min
a∊ {a0,…,aM }

{c(i, a) + ∑ γ × v(j) × p(j|i, a)j∈S }, ∀i ∈ s,                            (4) 

     

   Where v(i) represents the optimum expected discounted costs incurred from epoch 

n  onwards for the current state i. The predicted cost incurred for state i under action 

a is denoted by c(i, a). The discount factor γ ∈ [0,1], representing the discounting 

extent. Additionally, p(j|i, a) denotes the probability of transitioning to a new state j 
given the current state i under the action a. 

 

 

3  MDP Application to Freight Railways Wheelsets 

     
This section illustrates the application of the Markov decision process to freight 

railway wheelsets. Section 3.1 explains the problem and its related assumption, while 

section 3.2 outlines the parameter selection. In section 3.3 the state space of the 

Markov transition matrix is defined, and finally, section 3.4 explains the calculation 

of the Markov transition matrix using wheel wear data.   

 

 

3.1     Problem Description and Assumptions 

 

The dataset under analysis was gathered from December 2015 to April 2023 (i.e., a 7-

year interval) from a fleet of wagons. The dataset contains different numbers of 

wagons, each equipped with four wheelsets. 

 

    The present work operates under the assumption that all observations yield reliable 

estimates of the true states of the system and all maintenance actions yield consistent 

outcomes. Markov decision process model encompasses the following considerations: 

I. The wheel tread diameter (D), is a primary indicator of wheel profile for 

determining the lifecycle stage for a given wheel at a certain epoch(n); 

II. The occurrence of wheel damage, including rolling contact fatigue (RCF), 

flats or cavities, poses a significant risk to the lifecycle of railway wheelsets; 

III. The Mileage since last maintenance (M) operation of each wheelset; 

IV. The Gross Ton Mileage since last maintenance (GTM) and it is measured in 

Million Gross ton km (MGT.km); 

V. The three potential maintenance actions (a = 1,2,3); 

• Do nothing (a = 1): wheelset is ok and is returned to service in the same state; 
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• Renewal (a = 2):the maintenance actions, whether corrective or preventive, 

must extend beyond the scrap diameter. Consequently, the wheel necessitates 

replacement with a new one; 

• Turning (a = 3): The wheelset undergoes turning on a lathe to align its shape 

with standard specifications, leading to a decrease or loss in diameter. 

  

    Previous studies utilized wheel tread diameter (D) and Mileage since last 

maintenance (M) as key parameters to construct a state space and Markov Transition 

Matrices [21], [22]. In the context of freight railways, we examine the Gross Ton 

Mileage since last maintenance (GTM) and compared it with the Mileage since last 

maintenance (M) to investigate that which parameter affect the wheel tread diameter 

(D) the most. Following the comparison, we select the most appropriate parameter 

along with wheel tread diameter (D) and defined the state space, the MTM and the 

MDP model for supporting maintenance/turning decisions in freight railway 

wheelsets. The next subsection defined the selection of parameter. 

 

3.2    Parameter Selection 

 

The key parameter  of developing a state space, the MTM and the MDP model; wheel 

diameter (D) is the essential variable, and for selection of another variable, we 

developed a two different linear models using a simple linear regression approach 

considering variables diameter of wear (|∆Dw|), the Mileage since last maintenance 

(M) and the Gross Ton Mileage since last maintenance (GTM). The linear models are 

defined by equation (5) and (6) is defined as: 

                                                  M1: |∆Dw | =  β0 + β1 × M                                 (5) 

                                                    M2: |∆Dw | =  β0 + β1 × GTM                            (6)    

     Upon comparing both models, the following results shown in Table 1, which are 

as follows: 

 

 

Model Regression 

coefficient 

Estimates P value R-

squared 

Residual 

Standard 

error (σ) 

M1 β0 -1.210 0.259 0.563 4.411 

β1
 5.395×10-5 1.841×10-11 

M2 β0 -2.650 0.003 0.731 3.436 

β1 1.118×10-6 < 2×10-16 

Table 1: Summary of Linear Model M1 and M2 

 

    The results indicate that both models based on their independent variable is 

statistically significant. Model M2 exhibits higher R-squared values compared to M1, 

suggesting that variable gross ton mileage since last maintenance (GTM) has greater 

impact on the wheel tread diameter (D). Consequently, for developing MDP models, 

the state space and estimation of MTM’s involves the variables wheel tread diameter 

(D) and gross ton mileage since last maintenance (GTM).     
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3.3    State Space 

 

The state space is determined by key indicators of the wheelset states: wheel diameter 

(D) and gross ton mileage since last maintenance (GTM). Wheel diameter ranges from 

an initial diameter (Di) of 920 mm to a scrap diameter (Df) of 850 mm, divided into 1 

mm intervals (i.e.,70 different levels). Simultaneously, the gross ton mileage since the 

last maintenance ranges from 0 to 25 million Gross Ton-km [MGT.km] in 0.5 million 

Gross Ton-km [MGT.km] intervals yielding 51 discrete levels or epochs. Finally, a 

wheelset can be damaged or not in 70 states with damage, which are kept at the end 

of the state space. Transitions from damaged to non-damaged states are compulsory 

because they must be removed once the damage is detected. Hence, damage states 

have not had an extension depending on the gross ton mileage since last maintenance. 

Therefore, there are 3640 different states, denoted as s ∈ {s1,…,s3640}. 
 

3.4    Estimation of MTM’s  

 

The assumption that the wear of a wheelset (|∆Dw|), as indicated by its diameter 

change, is statistically independent of its initial diameter (Di) as shown in Figure1, is 

reasonable because the independence hypothesis cannot be rejected at a significance 

level of 0.05. 

 
Figure 1: Diameter loss due to wear (|∆Dw|) across various diameters (Di) 

 

    An MTM has been specified for every distinct actions. This section is partitioned 

into three subsections explaining the estimation of the Do-nothing MTM (P1), the 

Renewal MTM (P2), and the Turning MTM (P3). 

       

3.4.1    Do-nothing action  

 

According to the Do-nothing strategy, increasing a wheel’s diameter is only possible 

through replacement. Data indicates that significant decreases in diameter due to wear 

are highly improbable. Hence, simplifying it’s assumed that the only feasible 

transitions from one state to another involve a decrease in diameter with a probability 

θ, or the wheelset stays in its current state with a probability (1 − θ), as depicted in 

Figure 2.    
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Figure 2: Transitions between states due to linear wear depending on parameter θ for 

the Do-nothing action. 

     Regarding the reduction in diameter caused by wear, the Markovian approach 

enables the prediction of the average value (|∆D̅w|) at 0.5 (MGT.km) intervals as 

illustrated by equation (7). 

                                 |∆D̅w(n)| = X0P
nDw                                                              (7) 

 

     To calculate the average scalar values, we examined the varying wheel diameters 

across different wear conditions is indicated by equation (8). 

                                  |∆Dw| = [0 1 2…… .69]T   (mm)                                         (8) 

     The possible variations in wheelset diameter, based on the diameter values 

represented in the sample, ranging from an initial diameter (Di)  of 920 mm to scrap 

diameter (Df)  of 850 mm and the initial state of the wheelset is illustrated by equation 

(9) is as follows: 

 

   X0 = [P(∆Dw = 0)  P(∆Dw = 1)  ⋯P(∆Dw = 69)] = [1  0 ⋯   0]                          (9) 

 

     The reference value (θ) for the transition probabilities was calculated by regression 

approach, considering a subset of the original data where no action (turning/renewal) 

was taken. A simple linear regression without an intercept was considered. According 

to ordinary least squares (OLS) criterion, the resulting regression line is represented 

in black (Figure 3), by setting the value of θ = 0.44 in equation (8), equation (7) can 

be solved to determine the n-step transition probabilities (i.e. the probability that 

process in state i will be in state j after 𝑛 additional transitions). The value of θ = 0.44 

produced the best fit line, as illustrated by Figure 3. The data points (shown as black 

crosses) represent a loss in wheel diameter (|∆Dw|)  due to wear and are categorized 

by the variable “gross ton mileage since last maintenance”. 

 
Figure 3: Diameter loss (|∆Dw|) for wheelsets with Gross Ton Mileage since last 

maintenance 



8 

 

    Further, it is necessary to derive the probabilities of a wheel transitioning to a 

damaged state. The fundamental assumption is that once a wheel is detected as 

damaged, it cannot continue to be in service until the wheel is to be replaced or 

reprofiled. Consequently, the transitions form an undamaged wheel to a damaged one 

are depicted in Figure 4.  

 

 
Figure 4: Transition Probabilities to state with damage 

 

 

     For the estimation of damage probabilities, a Cox proportional-hazard model 

(CPHM) is implemented[23], [24]. A CPHM model derived by Costa et al. [22] is to 

be adopted to derived a new CPHM model. Hazard rates are calculated using the 

CPHM, displayed in Figure 5. The probability of occurring damage in a wheel at a 

given diameter at a specific GTM is taken by the discretized values of hazard curves, 

as shown in figure 5.  

 
Figure 5: Survival probabilities estimated per diameter group, with representative 

values gross ton mileage since last maintenance. 

 

 

The damage probabilities are considered independent of wear probabilities. Hence, 

the joint transition probabilities of damage and wear is equal to the product of the 

marginal transition probabilities, as follows: 

                              P(wear ∩ damage) = P(wear) . P (damage)                         (10) 

   After obtaining the transition probabilities and damage probabilities value, the 

Markov transition matrices for ‘Do nothing’ action (P1), is a 3640 by 3640 matrices  

composed by the sub-transition matrices in a diagonal block form, is illustrated by as 

equation (11) is as follows: 
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P1 = [Pi,j
1] =

[
 
 
 
 
 
 
 
 

0
MGT.km

0

10
MGT.km

Pw
(70×70)

⋯

0

25 
MGT.km

0

𝑠𝑡𝑎𝑡𝑒𝑠
𝑤𝑖𝑡ℎ 𝑑𝑎𝑚𝑎𝑔𝑒

0 ⋱ Pw
(70×70)

0

0 0 ⋱ ⋱ PD
(3570×70)

0 0 0 Pw
(70×70)

⋮ ⋱ 0 0
0 0 ⋯ ⋯ I(70×70) ]

 
 
 
 
 
 
 
 
(3640×3640)

    (11)                                                                                                                                                       

                                                                                                                             

3.4.2    Renewal action  

 

In context of Renewal action, whether the wheel is currently damaged or undamaged, 

transitions to the initial state are considered certain, as illustrated in Figure 6. Hence, 

the Markov transition matrices for ‘Renewal’ action (P2) is a 3640 by 3640 matrices, 

structured in equation (12) as follows: 

 
Figure 6: Transitions between states for the Renewal action  

 

                                     P2 = [Pi,j
2] = [

1 0 ⋯ 0
1 0 ⋯ 0
⋮ ⋯ ⋯ ⋮
1 0 ⋯ 0

]

(3640×3640)

                           (12) 

3.4.3    Turning action (𝐚 = 𝟑) 

  

Relative to the Turning action transition between states are schematically showed in 

Figure 7. There is a feasible reduction in diameter resulting from the re-profiling of 

the wheel, whether damage has been occurred or not.  

 

 
Figure 7: Transitions between states for the Turning action 

     

The database used by the Portuguese train operating company does not differentiate 

between turning situations that involve damage and those that do not. As a result, the 

0 MGT.km 

10 MGT.km 

⋯
 

25 MGT.km 

States with 
damage 
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probability distributions for diameter loss due to turning (∆DT) for both damaged and 

undamaged wheels were assumed to be the same, based on the data from Braga and 

Andrade[21].The probabilities were calculated by using the relative frequency from 

turning data of wheelsets as an approximation of the transition probabilities, that is 

shown by equation (13) and Figure 8:  

                                           P(turning) =  
nj

N
                                                       (13) 

                                         

 
   Figure 8: Histogram of the Diameter Loss due to Turning (∆DT) in a wheelset 

 

   In which nj is the number of wheelsets that transit to a class j of diameter loss and 

N is the total number of wheelsets. 

   The wheel diameter could not be decrease by more than 30 mm at any point as 

shown in the histogram. Therefore, any states preceding the current one or those too 

distant for the Turning action to accomplish have transition probabilities set to zero. 

When a wheelset undergoes turning, it goes back to state where the gross ton mileage 

since last maintenance (GTM), and if damage has occurred, it goes back to a state 

without damage, since once the damage is detected, it must be replaced. The histogram 

of Figure 8 (a) indicates that diameter losses surpassing the scrap diameter in the final 

state. The probabilities of further transitions are combined to determine the likelihood 

of the wheelset remaining at the final state (i.e., the scrap diameter). Thus, it’s possible 

to create the sub transition matrices for the “Turning” action from states without 

considering damage. In the same manner, using the probability values from Figure 8 

(b), it is possible to compose the subtransition matrices for the “Turning” action from 

states with damage. Hence, the Markov transition matrices for the Turning action (P3) 
is composed in the following manner which shows by equation (14). 
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P3 = [pi,j
3 ] =

[
 
 
 
 
 
 
 
 

  

0
MGT.km

pT
(70×70)

10
MGT.km

0
    ⋯

25
MGT.km 

 0
    

states 
with damage

 0
     

 pT
(70×70)

0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

pT
(70×70)

0 0 0 0

pT
(70×70)

0 0 0 0

 

  ]
 
 
 
 
 
 
 
 
(3640×3640)

 

(14) 

3.5     Reward Function 

 

The MDP Toolbox (MATLAB software) is selected to address the issue to employs a 

reward maximization approach to calculate the expected total discounted value 

rewards is assigned for all maintenance actions is to be negative [25].To construct the 

reward function, we define a reward vector (q) for the actions Do-nothing, Renewal, 

Turning. 

 

     The assumption for the Do-nothing action (a = 1) operates no operational cost, for 

Renewal action (a = 2) a fixed monetary unit (mu)  800 is assigned irrespective of the 

wheelset current state and the last action which is Turning a value of 50 mu for the 

wheel, without concerning the current state of the wheelset and a cost of correcting 

the damaged wheelset is 150 mu. However, for the critical states of the wheelsets for 

Do-nothing and Turning action a value of 10,000 mu  is to be assigned. Hence, the 

reward vector for all actions (a = 1,2,3) is as defined by equation (15), (16) and (17) 

is as follows: 

 

qi 
1 =

[
 
 
 
 
 

0
⋮

𝑞70
1 (𝑠70)

0
⋮

𝑞3640
1 (𝑠3640)]

 
 
 
 
 

=

[
 
 
 
 
 

0
⋮

10000
0
⋮

10000]
 
 
 
 
 

 

(15) 

                                          qi
2 = [

q1
2(s1)
⋯

q3640
2 (s3640)

] =  [
800
⋯

800
]                                     (16)                             

qi 
3 =

[
 
 
 
 
 
 
 

q1
2(s1)
⋮

𝑞70
1 (𝑠70)

q71
2 (s71)

𝑞3571
1 (𝑠3571)

⋮
𝑞3640

1 (𝑠3640)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

50
⋮

10000
50
150
⋮

150 ]
 
 
 
 
 
 

 

                                                                                                                               (17) 

0 MGT.km 

10 MGT.km 

States with 
damage 

scrap diameter 

scrap diameter 

scrap diameter 

damage 

25 MGT.km 

⋯
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4  Optimal Policy 

 
The MDP Toolbox within MATLAB software is employed to calculate the optimal 

policy for railway wheelset maintenance. The optimal policy is presented in a decision 

map based on the gross ton mileage since last maintenance (GTM), represented as 

shown in Figure 9.  

     The techniques for determining transition probabilities and choosing reward values 

in the "Reward/cost function" section have resulted in customised actions for the 

undamaged and damaged wheelsets. Figure 9 (b) highlights the actions of damaged 

wheelsets; only turning and renewal actions is to be assigned. The renewal actions are 

recommended for the last states where the “Turning” action would surpass the scrap 

diameter. For the undamaged wheelsets, Figure 9 (a) indicates the recommended 

actions based on gross ton mileage since last maintenance (GTM) and wheelset 

diameter(D). It provides the critical point let us assume the point G* where the turning 

action is recommended (G* = 12 MGT.km and D = 867 mm). The grey pattern on the 

right side of the map, suggests that turning action should be performed earlier as the 

diameter decreases. This relationship holds approximately until the point G*. The 

diameters below (867 mm or closer to scrap diameter), this strategy permits more 

shifts to GTM. For diameters below 860 mm, the best strategy is not to perform 

turning at all and let the wheelset wear out until the scrap diameter.  

 

 

 
Figure 9: Freight wheelset Decision Map for Evaluating Gross Ton Mileage Since 

Last Maintenance 
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5  Conclusions and Contributions 
 

A data-driven model-based approach is applied to maintain the freight train wheelsets 

and provide a better decision process in terms of the turning of wheelsets and 

replacement policy. The main result of this study is the creation of decision maps, that 

guide the following: For freight wheelsets up to a critical point G* (located at 

11.5MGT. km and a wheel diameter of approximately 865 mm), predictive turning 

actions are more important in terms of exceeding the wheelset lifecycle. However, 

after reaching this critical point, predictive turning gradually loses importance in the 

wheelset reprofiling policy. The decision map also shows that if the diameter of a 

wheelset is below 860 mm; the best strategy is not to perform turning and allow the 

wheelset wear out until it reaches the scrap diameter.    
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