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Abstract  
 

Wheel flat defect is the most common type of damage on train wheels, which can 

cause a high impact on the railway infrastructure and vehicle components. Artificial 

intelligence techniques for detecting geometric defects in train wheels have 

significantly enhanced railway maintenance and safety efficiency. Artificial 

intelligence systems excel in analyzing intricate wheel rotation patterns, swiftly and 

accurately identifying potential geometric deformations that could lead to wheel flats. 

Compared to traditional methods, artificial intelligence-driven defect identification 

provides a faster and more reliable approach, ensuring the safety and reliability of 

railway operations. This study proposes a discrimination learning algorithm to 

identify railway wheel flats, which consists of two stages: i) wheel flat detection to 

distinguish a healthy wheel from a damaged one; ii) classification of wheel damage 

based on its severity. To validate the unsupervised learning method, synthetic data 

acquired from a virtual wayside monitoring system is used, considering freight train 

passages, including wheels afflicted by single or multiple defects.  The developed 

methodology in this study represents effectiveness in detecting wheel flats and 

assessing the damage severity, regardless of the number of defective wheels. 
 

Keywords: wheel flat detection, wayside condition monitoring, train-track 

interaction, damage classification, unsupervised learning, machine learning. 
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1 Introduction 
 

Continuous operation of trains with damaged wheels increases the risk of track 

misalignment, which can potentially lead to derailments. Additionally, the ongoing 

effects of these defective wheels can cause structural damage to railway vehicles and 

their components over time, jeopardizing their integrity and lifespan. Therefore, it's 

crucial to regularly monitor the geometric quality of wheels on all railway vehicles to 

identify potential defects and classify their severity. Particular consideration should 

be given to freight trains due to their heavy loads and frequent use, making them more 

susceptible to wheel-related conditions [1]. 
 

It is foreseen that there will be a substantial shift in the transportation of goods 

from road to rail in the near future. As a result, in the absence of a safe rail transport 

system, increasing demand for the use of rail transport potentially results in 

derailments and disruptions in railway operations caused by defects in freight trains. 

Therefore, there is a vital need for innovative approaches to monitoring wheel 

conditions, including automatic detection and classification of out-of-roundness 

(OOR) wheels. OOR defects can cause vibrations that can damage the track and the 

vehicle components [2]. There are various types of OOR defects, including flats, 

eccentricities, polygons, corrugations on block-braked wheel treads, missing pieces 

of tread material due to fatigue cracking, and other random irregularities [3-5]. Among 

these, wheel flats are a frequently encountered form of wheel damage resulting from 

the friction between the wheel and rail caused by braking forces. This friction can 

remodel the wheel's exterior perimeter from round to flat [6]. 
 

The identification of defective wheels can be accomplished through the 

measurements obtained from wayside or onboard monitoring systems. As per the 

onboard methods, sensors are required on each vehicle wheel to evaluate their 

condition, resulting in a substantial cost for the monitoring system [7, 8]. To address 

this issue, wayside measurement systems are currently the most preferred solution for 

detecting flat wheels, as they can monitor the wheels of various vehicles as they pass 

through specific locations along the track [6]. Various sensors can be employed for 

the detection of wheel flats, including fiber Bragg gratings [9], acoustic emission 

sensors [10], strain gauges [11, 12], and accelerometers [6, 11, 13]. 
 

Different methods for automatic detection are employed to enhance result 

reliability, with the integration of more advanced techniques on a regular basis. 

Mosleh et al. [14] developed a method using the envelope spectrum to differentiate 

between defective and healthy wheels, which proved effective for polygonal wheels 

[13]. Chen et al. [15] developed a two-level adaptive chirp mode decomposition 

(ACMD) approach for wheel flat detection based on vehicle vibration measurements. 

Nowakowski et al. [16] proposed an approach involving vibration signal processing 

in the frequency and time domain to identify wheel flats.  
 

In recent years, the application of machine learning (ML) techniques has become 

increasingly prevalent in the detection of damage in vehicle systems. Dernbakh et al. 

[17] developed various classifier methods, including support vector machine (SVM) 
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and standard convolutional network (CNN), to identify wheel flats. Qing Ni et al. [18] 

devised a Bayesian machine learning technique for detecting train wheel damage and 

assessing wheel condition, which comes with more accurate responses compared to 

offline methods. Moreover, Mosleh et al. [1] developed an unsupervised detection 

methodology that automatically distinguishes between defective and healthy wheels 

based on acceleration and shear time histories evaluated on the rails. Afterward, 

Mohammadi et al. [6] proposed a discrimination learning approach for detecting 

wheel flat based on rail acceleration measurements to compare the accuracy of the 

different feature extraction techniques in wheel flat detection.  
 

However, it is notable that none of the prior studies on wheel flat detection have 

advanced to the point of classifying damage on vehicle wheelsets using wayside 

monitoring systems that include train passages with single and multi-damaged wheels. 

The aim of this study is to detect wheel flats and classify damage severity into three 

levels: low, moderate, and severe, regardless of the number or position of the wheel 

flat. An artificial wayside monitoring system is employed to validate the proposed 

methodology, and numerical simulations are carried out to evaluate its effectiveness. 

 

2 Numerical simulation  
 

This section represents the numerical simulations of vehicle, track, and irregularity. 

Moreover, the description of the wheel flat profile, dynamic train-track interaction, 

and damaged and undamaged train scenarios are described. 
 

2.1 Train-track interaction 
 

 The Laagrss freight train comprising five wagons is considered as a vehicle model 

to be evaluated in the current research. According to the UIC classification [19] , the 

train can reach a maximum speed of 120 km/h, a tare weight of 27 t, and a load 

capacity of 52 t. To simulate suspensions in all directions, a 3-D multibody dynamic 

model is computed using ANSYS® [20]. This model incorporates spring-damper and 

mass-point elements to accurately represent the mass and inertia at the center of 

gravity of each wagon component. Furthermore, the different components are 

connected by rigid beams. All train components' geometric and mechanical properties 

are described in Bragança et al.'s work [21] . 
 

 Additionally, the finite element model of the track is developed in ANSYS® [20] 

and validated by Montenegro et al. [22]. The model of the track is employed through 

a multi-layer scheme to simulate ballast, sleepers, and rails. The rail pads between the 

sleepers and the rail are simulated as connecting spring elements. Beam elements are 

used to represent the rails and sleepers, with appropriate material properties assigned 

to each. The ballast, on the other hand, is represented by discrete mass points. Spring 

dashpot elements are also incorporated to consider the flexibility of the foundation. 

Further details on the track model are mentioned in the work of Mosleh et al. [14]. 
 

 In real terms, Imperfections can be observed in the rails under track conditions. 

Despite their small size, these irregularities have a notable effect on the contact 

between the wheel and rail [23]. Hence, rail unevenness profiles are generated within 
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the wavelength intervals D1 and D2, which correspond to wavelengths ranging from 

1 m to 75 m as defined in European Standard EN 13848-2 [24]. Moreover, PSD curves 

are developed using real data to produce synthetic unevenness profiles. Mosleh et al. 

[25] provide more detail on the generation process of rail unevenness profiles. 
 

 To simulate the dynamic interactions between trains and tracks, the authors have 

developed an in-house software called VSI - Vehicle-Structure Interaction Analysis. 

This software has been validated and extensively described in previous publications 

[26] and used in various applications [11, 22]. The calculation of normal contact 

forces is based on Hertzian theory using a 3D wheel-rail contact model, while the 

USETAB routine is utilized to determine tangential forces resulting from rolling 

friction creep. MATLAB® [27] is used as a numerical tool to import the structural 

matrices of both vehicles and tracks, which were previously modeled using finite 

element analysis (FE). Both subsystems are initially modeled in ANSYS® [20] 

separately and then integrated using the VSI software in a fully coupled manner [26]. 

The authors ' previous publications [14] describe train-track interaction in more detail. 

Figure 1 presents the numerical model. wheel flat identification is performed using 

eight accelerometers along the track (four sensors on each side), positioned on the rail 

between two sleepers. 
 

 

Figure 1. Dynamic train-track interaction numerical simulation. 

 The various severities of wheel flats are considered to simulate defective wheels 

on a train. The categorization of wheel flats into low, moderate, and severe is based 

on the length of the flats (L). The lower and upper limits for the wheel's flat length in 
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each interval are determined by the uniform distributions U (10, 20), U (25, 50), and 

U (55, 100), respectively. The computation of the wheel flat depth (D) is done using 

the equation: 

 
 

D =
L2

16Rw
           (1) 

 

 The radius of the wheel is denoted by Rw, while the length of the flat length is 

represented by L. Additionally, the vertical profile of a wheel flat is determined using 

the following formula: 

 
 

Z =  −
D

2
 (1 − cos

2πx

L
) . H(x − (2πRw − L)),    0 ≤ x ≤  2πRw 

      
     (2) 

 In which, x represents the coordinate aligned with the track's longitudinal direction, 

and H is the Heaviside periodic function. 

 

 

 

 

 
 

2.2 Damaged and undamaged scenarios 
 

 To evaluate the automatic wheel flat identification method developed in this study, 

both undamaged and damaged train passage scenarios are simulated. The undamaged 

scenario depicts the train passing with wheels in normal condition, while the damaged 

scenario represents a train passing with defective wheels. Figure 1 illustrates three 

different cases of damaged layouts, including a single-damage scenario where the left 

wheel of the rear wheelset of the third wagon is flat and highlighted in green (Figure 

1a). Additionally, the far multi-damage scenarios with defects on the left wheel of the 

rear wheelset of the first wagon and the left wheel of the front wheelset of the last 

wagon are illustrated in orange (Figure 1b). Furthermore, the near multi-damage 

scenarios are also shown with flats in the left wheel of the rear wheels of the first and 

second wagons, highlighted in orange (Figure 1c). 

 
 

 For the baseline scenario, a total of 113 simulations were conducted, as illustrated 

in Table 1. Four different rail unevenness profiles, five varying train speeds (ranging 

from 40 to 120 km/h), and six loading schemes: (i) empty train; (ii) half-loaded train; 

(iii) three fully loaded trains with longitudinal and transversal unbalanced loads 

(UNB1, UNB2, and UNB3) are considered. The unbalanced loading configurations 

for the wagon model were determined according to the UIC loading guidelines [10], 

which involve offsetting the cargo gravity center in both longitudinal and transversal 

directions. 
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 Baseline 

scenario 

Damaged 

scenario 

Train Freight – Laagrss wagon 

Number of loading 

schemes 

6 1 (full capacity) 

Unevenness profiles 4 1 

Speeds (km/h) 40 – 120 80 

Noise ratio 5%  

Flat lengths (mm) - 10-20 mm (L1) 

25-50 mm (L2) 

55-100 mm (L3) 

Number of numerical 

analysis 

113 42 

Table 1: Defectice and healthy train scenarios. 
 

A total of 42 scenarios are modeled, each featuring distinct flat geometries while the 

train is passing at a speed of 80 km/h (as depicted in Figure 8). 30 simulations 

including the train passing with a single damaged wheel while the remaining 12 

simulations involve cases with multiple damages. For the single damage scenario, 30 

analyses are conducted, simulating 10 analyses for each flat length interval (low, 

moderate, and severe). 
 

 In the case of multi-damage scenarios, a total of 12 analyses are conducted. Among 

these analyses, six simulations include two defective wheels with identical severities 

(low-low, moderate-moderate, and severe-severe) for both the first and second 

wagons (train passages 31, 32, and 33), classified as far-multi-damage (Figure 1b) and 

for the first and last wagons (simulations 37, 38, and 39), referred to as near-multi-

damage (Figure 1c). Furthermore, the remaining six analyses involve two defective 

wheels with varying severities, such as low and moderate, low and severe, and 

moderate and severe flat properties (train passages 34, 35, and 36), for both the first 

and last wagons (Figure 1b), as well as for the first and second wagons in simulations 

40, 41, and 42 (Figure 1c). 
 

 The evaluation of acceleration signals in baseline and damaged scenarios is 

conducted using a sampling frequency of 10 kHz, along with the artificial noise (5% 

amplitude), to simulate real-world conditions for the measured rail response. 

Additionally, a low-pass Chebyshev type II digital filter with a cut-off frequency of 

500 Hz is applied to filter the time-series data. 
 

3 Proposed methodology for automatic wheel flat identification 
 

As illustrated In Figure 2, the automatic wheel flat identification process developed 

in this research consists of two stages. In the first stage, a confidence boundary is 

established by analyzing the baseline responses of the rail to detect train passages with 

defective wheels. The second stage enables the classification of a wheel flat based on 
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the damage severity. All the steps of this procedure are summarized in the flowchart 

presented in Figure 1. The automatic wheel flat detection includes five steps in the 

first stage as follows: 
 

1- The input signals are captured using installed sensors on the rail. 
 

2- Feature extraction from multiple sensors is accomplished through the 

implementation of the Continuous wavelength transform (CWT). This 

transformative process converts time series measurements into damage-

sensitive features while simultaneously achieving notable data compression. 
 

3- In order to suppress environmental and operational effects and enhance their 

sensitivity to damage, Principal Component Analysis (PCA) is applied to the 

extracted features.   
 

4- Furthermore, the application of the Mahalanobis distance enhances the 

sensitivity of the modeled features. The fusion of each sensor's features is 

effectively accomplished through the Mahalanobis distance. A damage 

indicator (DI) is produced for each train passage. 

 

5- An assessment of a wheel's condition is conducted through a statistical method 

to differentiate between a healthy and defective state. The estimation of a 

statistical confidence boundary (CB) is derived from a Gaussian Inverse 

Cumulative Distribution Function. 

 

 

Figure 2. The framework of wheel flat identification. 
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After detecting the train passages, including defective wheels, the healthy scenarios 

are discarded in the second stage. subsequently, the detected signals corresponding to 

the defective scenarios are used as input for damage severity classification in the 

second stage. The proposed methodology classifies the damage severity through the 

following five steps: 
 

1- Initially, the signals are segmented for both single and multi-damaged 

scenarios using an automatic segmentation technique [28]. The main purpose 

of this step is to separate the signal corresponding to each defective wheel in 

multi-damage scenarios. 
 

2- Afterward, the damage-sensitive features are extracted using CWT using the 

cut signal. 
 

3- The Sparse autoencoder is implemented to obtain alternative features by 

computing Mean Squared Error (MSE) and Mean Absolute Error (MAE) 

between original CWT-based features. 
 

4- Furthermore, MD is calculated using MSE and MAE to enhance sensitivity to 

the damage. 

 

5- Finally, the severity of the defect is classified using the K-means clustering 

technique. 
 

4 Results 
 

This research's output is divided into two distinct sections. Initially, the study detects 

defective wheels from healthy ones and then classifies the damage based on the 

severity of the defects. 
 

4.1 Wheel flat detection 
 

As described in Figure 2, wheel flat detection includes 4 main steps after data 

acquisition. The output of each step, namely feature extraction, feature normalization, 

data fusion, and damage detection, are represented in this section separately.  
 

4.1.1 Feature extraction 
 

A total of 468 features are computed using time series data for each accelerometer. 

The analysis consists of a total of 155 simulations, which include both baseline and 

damaged scenarios. By applying the Continuous Wavelet Transform (CWT) to signals 

of these scenarios, a three-dimensional matrix of size 155-by-468-by-8 for each of the 

eight measurement points is obtained. Figure 3 represents four of the 468 CWT 

features based on the measured accelerations. The features can be categorized into 

two main groups based on the condition of the train's wheels: baseline scenarios (first 

113 passages) and damaged scenarios (42 passages following the occurrence of 

damage). Each single damage scenario is represented by ten symbols, which 

correspond to different levels of wheel flat severity ranging from low to severe 

damage. Consequently, simulations 114 to 123 represent vehicle passages with low 
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wheel flat lengths between 10 and 20 mm (SD-low), while simulations 124 to 133 

represent vehicle passages with wheel flat lengths between 25 and 50 mm (SD-

moderate). In simulations 134 to 143, the range of 55 to 100 mm (SD-severe) is 

considered for wheel flat length. Finally, damage scenarios 144 to 155 show vehicle 

passages with multi-defective wheels.  
 

 The variety of information in different CWT-based damage-sensitive features is 

illustrated in Figure 3. Notably, Figure 3a and Figure 3b demonstrate a specific 

ascending sensitivity pattern for single-damaged scenarios, thereby highlighting the 

visible amplitude differences between low-damage scenarios and moderate to severe 

damage scenarios. On the contrary, Figure 3c demonstrates a steady change in 

amplitude, with no discernible difference between baseline and damage scenarios. On 

the other hand, Figure 3d illustrates an inconsistent amplitude variation. Therefore, it 

can be concluded that the distinction between baseline and damage scenarios is not 

clear due to the impact of environmental and operational factors. As a result, feature 

normalization is implemented in the following section. 

 

 

 
 

 

 

Figure 3. Feature extraction based on the CWT technique. 



10 

 

4.1.2 Feature normalization 
 

In the second step of damage detection, the first 15 components are eliminated as the 

cumulative variance exceeds 80%, resulting in an 8-by-468 matrix of features 

generated by PCA for each vehicle passage. Figure 4 represents four normalized 

features, indicating the impact of EOVs on feature extraction and normalization 

Figures. However, distinguishing between undamaged and damaged wheels post-

PCA implementation proves challenging due to minimal differences, leading to a data 

fusion approach discussed in the subsequent section. 
 

 

 

 

Figure 4. Feature normalization based on PCA technique. 

4.1.3 Data fusion 
 

Data fusion involves computing MD to obtain a damage index (DI). The application 

of MD allows each sensor and vehicle passage to be transformed into a damage-

sensitive feature based on 453 PCA-CWT parameters. The output of this process 

consists of 155 by-1 vectors of Mahalanobis distances. Figure 5 represents the 

improved sensitivity to damage and the varying sensitivities of sensors to damage, 

leading to disparate damage indexes. 
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Figure 5. Data fusion based on computing Mahalanobis distance 

 

4.1.4 Detection 
 

The first stage of the proposed approach concludes with the implementation of 

automatic wheel flat detection (Figure 2). This detection is accomplished using a CB 

calculated through a Gaussian inverse cumulative distribution function. A threshold 

of 1% is set as the significance level. Figure 6 illustrates the wheel flat detection 

considering all 155 wheel conditions. The results represented in this figure 

demonstrate the exceptional efficacy of the proposed method in accurately 

distinguishing between healthy and damaged scenarios without occurrences of false 

positives or false negatives. 

 
 

 

 

 

Figure 6. Automatic wheel flat detection. 

 

4.2 Wheel flat classification 
 

Figure 7 describes the automatic classification of wheel flats based on their severity 

using the segmented acceleration signal. This figure illustrates the division of 

damaged scenarios into two sections by a blue line. The initial 30 indicators describe 

train passages with single defective wheels, while the remaining 24 indicators 

correspond to multi-damage scenarios involving two defective wheels. Each multi-
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passage involves two damaged wheels; therefore, a total of 24 segmented signals are 

generated.  

 The outputs presented in Figure 7 indicate that the developed approach in the 

current study is capable of classifying defective wheels according to their severity 

(low, moderate, and severe) with just a single sensor, irrespective of whether the train 

has one or multiple damaged wheels. As shown in Figure 7, the damage severity 

classification with a single sensor results in only two misclassifications. 
 

 One of these damage indexes corresponds to the train passage, including one 

defective wheel with a flat length measuring 27.5 mm. This measurement comes close 

to the lower boundary of damage severity (10-20 mm), resulting in misclassification. 

On the other hand, the second misclassification occurs in train passage involving 

multiple damages, and the damaged wheel is located on the second wagon with a flat 

length of 40 mm. It can be concluded that the proposed unsupervised methodology 

can classify damage severities into low, moderate, and severe levels. This damage 

classification is achieved regardless of the number of defective wheels in each train 

passage. 

 

 

 
 

 

 

 

Figure 7. Wheel flat severity classification. 

 

 

5 Conclusions  
 

This study presents an unsupervised discrimination algorithm for wheel flat 

identification. It operates in two stages: first, detecting wheel flats by establishing a 

confidence boundary, and second, classifying wheel damage based on its severity. The 

algorithm's effectiveness is validated using artificial data from a virtual wayside 

monitoring system concerning freight train passages. The proposed methodology is 

capable of distinguishing train passages with defective wheels from healthy ones. 

Moreover, the developed algorithm automatically classifies the defect severity into 

low, moderate, and severe damage levels, regardless of the number or position of the 

defect. 
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