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Abstract 
 

Embedded systems are vital for implementing simulation-based estimators designed 

to estimate dynamical systems. Field Programmable Gate Arrays (FPGAs) are widely 

recognized for their hardware flexibility and high processing speed to construct 

nonlinear condition monitoring systems. The extended Kalman filter (EKF) model is 

designed in MATLAB and implemented on FPGA in this research study to predict 

various railway wheelset characteristics under varied track contact conditions. In this 

context, the National Instruments (NI) myRIO® development board and sbRIO® 

single-board controller are used to verify the onboard estimation of wheel-rail 

interaction parameters through Xilinx® System-on-Chip Zynq and Xilinx Spartan-3 

FPGA devices, respectively. Both FPGA platforms are used to evaluate the MATLAB 

simulated dataset for the railway nonlinear wheelset model with different track 

conditions for the vehicle's accelerating and decelerating operation modes. For 

functional verification, the EKF-based railway wheelset parameter estimation is 

synthesized on FPGA devices, and the FPGA findings are consistent with the 

MATLAB simulation results. The area-performance analysis of both NI embedded 

boards (myRIO and sbRIO) is presented and these FPGA devices are seen as suitable 

 

Performance Analysis of FPGA-Based Extended 

Kalman Filter for Railway Wheelset Parameters 

Estimation 
 

K. Mal1,2, B.S. Chowdhry2, I.H. Kalwar3, T.D. Memon4 

and T.R. Memon5 
 

1Sukkur IBA University, Sukkur, Pakistan 
2NCRA-Condition Monitoring Systems Lab, Mehran University of 

Engineering & Technology, Jamshoro, Pakistan 
3Faculty of Engineering Sciences and Technology, Iqra University, Karachi, 

Pakistan 
4Center for Artificial Intelligence Research and Optimization, Faculty of 

Design and Creative Technology, Torrens University, Melbourne, Australia 
5Department of Electronic Engineering Quaid-e-Awam University of 

Engineering, Science and Technology, Nawabshah, Pakistan 

 

 

 

Proceedings of the Sixth International Conference on 
Railway Technology: Research, Development and Maintenance 

Edited by: J. Pombo 
Civil-Comp Conferences, Volume 7, Paper 7.5 

Civil-Comp Press, Edinburgh, United Kingdom, 2024 
ISSN: 2753-3239,  doi: 10.4203/ccc.7.7.5 
ÓCivil-Comp Ltd, Edinburgh, UK, 2024 



 

2 

 

for implementation of designed EKF. Functional verification and resource utilization 

of Xilinx System-On-Chip Zynq and Xilinx Spartan-3 are investigated. It is observed 

that Xilinx System-On-Chip Zynq FPGA is optimal for the estimation of railway 

wheelset parameters. 
 

Keywords: condition monitoring, railway wheelset, wheel-rail interaction, FPGA 

implementation, performance analysis, System-On-Chip, Spartan-3. 
 

1  Introduction 
 

The forces between the wheel and the track determine the rolling stock's dynamic 

performance [1, 2], and the transmitted tangential force in the wheel-track is known 

as the adhesion force [3]. Since these forces are rarely measured directly, it is 

important to estimate the railway vehicle's contact forces using cutting-edge 

techniques. A model-based technique for estimating the friction coefficient of wheel 

and rail contact is provided in [4] and uses an unscented Kalman filter. A data-driven 

method for identifying adhesion between a heavy-haul locomotive's wheel and track 

is provided in [5] and uses Particle Swarm Optimization (PSO) and Kernel Extreme 

Learning Machine (KELM). In order to create a slip controller, the traction force is 

approximated in [6] by using the Kalman filter. In order to provide a more 

sophisticated braking control system, adhesion characteristics between wheels and 

rails are assessed in [7] by creating an observer. In order to evaluate the effect on creep 

forces in wheel-rail interaction, [8] compares theoretical and measured creep curves. 

Many studies are being conducted to estimate the wheel-track contact conditions; 

most of these studies make use of model-based methodologies [9, 10]. 
 

During the literature review, numerous methods for precise estimation of railway 

wheel-rail contact conditions are discovered. Research on the implementation of 

wheelset parameter estimate techniques is lacking, nevertheless. For instance, in [1], 

the NI myRIO development board is used to build EKF on a Xilinx System-On-Chip 

Zynq FPGA in order to predict railway wheelset parameters.  The state of charge 

(SOC) estimation of a lithium-ion battery using the FPGA implementation of EKF is 

demonstrated in [11]. In [12], the position and orientation of an omnidirectional 

mechatronic system is estimated by developing sensor fusion using EKF on myRIO-

1900 via LabVIEW. In [13], a system with LabVIEW is built to build variable-order 

fractional chaotic systems, which are then implemented on the Xilinx FPGA chip via 

myRIO-1900. In [14], sigma-delta modulation techniques are used to create an 

adaptive channel equalizer on MATLAB and FPGA to examine its performance, and 

implement a better steepest descent algorithm. In [15], the design is mapped on a 

Xilinx FPGA to analyze the performance of the multiply-accumulate (MAC) unit. A 

comparative study is conducted on performance analysis of the MAC unit utilizing 

several non-conventional, non-binary number systems. However, there aren't many 

published reports in the literature about EKF implementation and performance study 

on FPGA for wheel-rail contact conditions.  
 

Thus, in order to estimate wheel-rail contact parameters, we expand on the work 

suggested in [1, 16] in this research paper by developing and implementing the 
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extended Kalman filter algorithm on two distinct FPGA platforms. The computer-

based National Instruments sbRIO single-board controller and myRIO® development 

board are chosen for this purpose.  

This is how the remainder of the paper is structured. Section 2 describes the design 

and FPGA implementation of EKF, while Section 3 presents the performance analysis 

of the entire model. The results are examined in detail in part 4, and the conclusion 

and next steps are covered in section 5.  
 

2  Extended Kalman Filter Design and FPGA Implementation 
 

Wheel-rail contact characteristics have a major impact on railway operation 

performance, but they are not readily observable. Thus, for a safe and pleasurable train 

ride, a cutting-edge method for calculating adhesion conditions with real-time 

implementation is required [3]. 

 

2.1  Extended Kalman filter Design 
The extension of the railway wheelset parameter estimate, as shown in Refs. [1, 16, 

17], is the focus of this research project. Scholars concern the accurate assessment of 

adhesion conditions and their real-time implementation to be challenging. Since the 

nonlinear behavior of railway dynamics makes a single Kalman filter inappropriate 

for the wheel-track interaction system, an extended Kalman filter is employed in a 

model-based method to predict wheelset parameters. Figure 1 displays the EKF block 

diagram using the wheelset model. 

 

 
Figure 1: Block diagram of EKF and wheelset model [1] 

 

 This nonlinear wheelset model is used in the creation of the EKF algorithm [16]. 

Equation (1) is provided by developing EKF utilizing the railway wheelset's lateral 

and yaw motion equations. For state matrix x, five variables, such as lateral velocity 

(�̇�), yaw rate (Ψ̇), slip ratio (γ), friction coefficient (μ), and adhesion force (Fa), are 

selected and for measurement matrix m of the EKF algorithm, lateral acceleration and 
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yaw rate are selected, as stated in equation (2). Table 1 displays the specific 

parameters employed in the EKF design for wheelset parameter estimate.  
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x=[�̇� Ψ̇ γ 𝜇 𝐹𝑎]T, m= [�̈� Ψ̇]T                (2) 

 

No. Notation Description Value 

1 γ Slip ratio - 

2 r0 Radius of wheel 0.5 meter 

3 Lg Track half gauge 0.75 meter 

4 λw Wheel conicity 0.15 rad 

5 v Longitudinal velocity of vehicle m/sec 

6 y Motion in lateral direction meter 

7 yt Rail irregularities in lateral direction meter 

8 Ψ Yaw angle radians 

9 Fa Adhesion force Newton 

10 Iw Yaw moment of inertia of wheelset 700 kgm2 

11 kw Yaw stiffness 5 x 106  N//rad 

12 mw Wheel weight with induction motor 1250 kg 

Table 1: Parameters utilized in EKF design to estimate wheelset parameters. 

 

Using the MATLAB Function tool of Simulink version 9.1, the EKF algorithm 

shown in Figure 1 is constructed in Simulink for simulation. In Figure 2, the Simulink 

model is displayed. 

 

Figure 2: EKF-based simulation model for railway wheelset parameter estimate. 
 

 We describe the functional verification, area-performance analysis, and FPGA 

implementation of the suggested EKF model in the section that follows in order to 

provide effective predictive maintenance plans. 
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2.2  FPGA Implementation 
 

Figure 3 displays the block diagram for the entire suggested model. The entire 

suggested model consists of an FPGA implementation and MATLAB simulation. The 

simulation component consists of a MATLAB-developed railway wheelset that is 

explained in [16] and the MATLAB EKF algorithm architecture that is shown in 

section 2.1. This section provides an explanation of the final portion of the suggested 

model. Synthesizing any dynamical system across many FPGA platforms is essential 

for its dependable and effective implementation [18]. The Xilinx System-On-Chip 

Zynq FPGA integrated into NI myRIO-1900 and the Xilinx Spartan-3 FPGA included 

into NI sbRIO-9632 are used to implement the EKF that was designed in MATLAB. 

The purpose of conducting two implementations on distinct architectures is to confirm 

that the EKF algorithm's structure is independent and to identify a potential FPGA 

board [19]. An Artix-7 FPGA chip with onboard memory and a dual-core Advanced 

RISC Machine (ARM) CPU are integrated into computer-based real-time embedded 

evaluation board known as the NI myRIO®-1900 [20]. The Xilinx Spartan-3 FPGA 

chip, on the other hand, is incorporated into the NI sbRIO-9632, a CompactRIO 

Single-Board Controller that offers superior embedment in a variety of applications 

where high performance and flexibility are required [21]. LabVIEW software, a 

system-design platform, and a development environment from National Instruments 

are required for both real-time embedded boards. 

The wheelset model simulation dataset, which is stored on solid state drives (SSD) 

and read by real-time (RT), is streamed to FPGA on each NI embedded board after 

analysis. The dataset was simulated in MATLAB [16]. 

 

 
Figure 3: Block diagram of entire suggested model [1]. 

 

The NI myRIO and sbRIO boards' operational flow is depicted in the functional 

block diagram of Figure 4. Each NI embedded board has a solid state drive (SSD) that 

stores the wheelset model simulation dataset. An ARM CPU reads the SSD, processes 

it, and streams the data to an FPGA via DMA-FIFO (AXI-4 Stream interface). The 

internal computation, process Jacobian matrix, measurement Jacobian matrix, and 

predict-correct algorithm constitute the four primary cores of the FPGA. The 
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Extended Kalman filter employs a fixed-point data format for both FPGA devices. 

Using the TCP/IP network interface, the host PC receives results from the FPGA. 

 

 
Figure 4: Functional flow diagram of NI myRIO and sbRIO [1]. 

 

The chip-area utilizations on Xilinx Zynq and Xilinx Spartan-3 FPGA devices are 

shown in Table 2 following the synthesis of the suggested model. 

 

Resource 

Name 
FPGA Device 

Availab

le 
Used 

Utilization 

(%) 

CLBs 

Xilinx Zynq System-On-

Chip 
2200 2200 100 

Xilinx Spartan-3 8320 3744 45 

Slices 

Xilinx Zynq System-On-

Chip 
4400 4400 100 

Xilinx Spartan-3 16640 7488 45 

Block RAMs 

Xilinx Zynq System-On-

Chip 
1620kb 

1162k

b 
71.7 

Xilinx Spartan-3 1728kb 553kb 32 

Multipliers/

DSP nodes 

Xilinx Zynq System-On-

Chip 
80 33 41.2 

Xilinx Spartan-3 104 26 25 

Table 2: Resource utilization of Xilinx Zynq FPGA and Xilinx Spartan-3 FPGA. 

 

Xilinx Spartan-3 FPGA uses more customizable logic blocks (CLBs) and slices 

than Xilinx Zynq because the latter ran out of CLBs and slices. Xilinx Zynq, one of 

the most optimized FPGAs, uses more kbs of Block RAMs and multipliers/DSP nodes 
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than does the Xilinx Spartan-3 FPGA. Furthermore, each sample produced by the 

Xilinx Zynq and Xilnx Spartan-3 FPGAs uses 52 clock cycles. This shows an FPGA 

throughput of 769 kilo samples per second; however, the latency is 20 kilo samples 

per second. The calculation is displayed in Table 3. 

 
FPGA 

clock 

Time period No. of clocks per 

sample 

Total time taken 

per sample 

Throughput 

40 MHz 25 nano 

seconds 

52 1.3 µseconds (52 

cycclesx25 nanosec) 

769 KS/second 

Table 3: FPGA clock performance calculation. 

 

3  Performance Analysis of Complete Model 
 

Different conditions (e.g., dry, wet, greasy, highly slippery) are investigated to 

examine the functional behavior of the FPGA-implemented EKF. Figure 5 shows that 

for wet, greasy, and dry track conditions, the adhesion coefficient with respect to slip 

ratio varies nonlinearly. The conditions of normal adhesion to low adhesion are shown 

by these curves. These conditions have been selected to illustrate the EKF algorithm's 

efficacy in a range of adhesion conditions. 

 

 
 

Figure 5: Slip ratio curves for all adhesion conditions. 

 

For a duration of 100 seconds, the complete model comprising a wheelset and an 

FPGA-based EKF is analyzed (50 seconds during the railway vehicle's accelerating 

mode and 50 seconds during its decelerating mode). When the track condition is 

suddenly altered from extremely slippery to dry conditions, the entire model is 

evaluated. The model receives an input of random track disturbance with an amplitude 

of ±7 mm to excite lateral dynamics. The initial linear velocity is set at 5 m/sec. The 

adhesion coefficient, slip ratio, and yaw rate—the three most crucial wheelset 

parameters—are studied because they affect the dynamics of the complete railway 

vehicle. 

In 50 seconds of operation, the track condition changes from extremely slippery to 

dry through greasy and wet conditions while operating a railway vehicle. In the 
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remaining operation, the track condition reverses from dry to extremely slippery. As 

seen in Figure 6, the vehicle is driven on one track condition for approximately 12.5 

minutes, and transition of track from one condition to other is completed in one 

second. 

 

 
Figure 6: Switching of track conditions duration vehicle operation 

 

During the first 50 seconds of operation, the tractive torque is gradually increased 

to 5000 Nm in the accelerating mode. This results in a maximum increase in linear 

velocity of approximately 24 m/sec, or 86.5 km/h. When operating in deceleration 

mode, torque is applied in the opposite direction to bring the linear velocity down to 

its initial value. In addition, Figure 7 shows the linear velocity and applied torque. 

 

 
Figure 7: Vehicle forward velocity (bottom) and exerted torque (top) during 

transition of track conditions 

 

Figure 8 displays the examination of the adhesion coefficient on track condition 

transition through Simulink, FPGA Zynq, and FPGA Sparta-3. In Simulink, when a 

track is switched, the estimation error increases significantly; otherwise, the error is 

minimal. However, because of the complex scenario—which includes lateral track 

irregularities, traction and brake operation modes, and adhesion condition changes 
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throughout vehicle operation—a somewhat higher estimating error in adhesion 

coefficient is generated through both FPGA platforms. 

 

 

 

 

 
Figure 8: The adhesion coefficient for all conditions on Simulink (top), on FPGA 

Zynq (middle) and on FPGA Spartan-3 (bottom) 
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Figure 9 illustrates the assessment of slip ratio during the track condition change 

using Simulink, FPGA Zynq, and FPGA Sparta-3. The wheelset model's slip ratio is 

followed with an acceptable inaccuracy by the FPGA-based EKF reaction [22]. 

 

 

 

 
Figure 9: The slip ratio for all conditions on Simulink (top), on FPGA Zynq 

(middle) and on FPGA Spartan-3 (bottom) 
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Figure 10 displays the evaluation of the yaw rate on track condition change using 

Simulink, FPGA Zynq, and FPGA Sparta-3. With relatively minimal estimation error, 

Zynq FPGA and Spartan-3 respond in a way that matches the wheelset model's yaw 

rate. 

 

 

 

Fig 10: The yaw rate for all conditions on Simulink (top), on FPGA Zynq 

(middle) and on FPGA Spartan-3 (bottom) 
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4  Result Discussions 

 
The EKF intended for railway wheelset parameter estimate is implemented on FPGA, 

as seen in Figures 8 through 10. MyRIO-1900 and sbRIO-9632 are two NI boards that 

can be used to implement planned EKF for railway wheelset parameter estimate on 

FPGA. 

Equations (3) and (4) are used to compute the relative accuracy index in %, which 

is used to numerically assess the functional behavior of the EKF-based estimator [22]. 

𝐴 = 𝑟𝑚𝑠(𝑆𝑖𝑔𝑛𝑎𝑙𝑒𝑠𝑡  − 𝑆𝑖𝑔𝑛𝑎𝑙𝑠𝑖𝑚)        (3) 

𝐽 =
𝑟𝑚𝑠(𝑆𝑖𝑔𝑛𝑎𝑙𝑒𝑠𝑡 −𝑆𝑖𝑔𝑛𝑎𝑙𝑠𝑖𝑚)

𝑟𝑚𝑠(𝑆𝑖𝑔𝑛𝑎𝑙𝑠𝑖𝑚)
           (4) 

The first is the absolute accuracy index A, which is determined by taking the 

difference between the simulated and estimated wheelset parameters and calculating 

its root mean square value (rms). The information from the absolute accuracy index 

is completed by the second one, the relative accuracy index J. Table 4 provides the 

relative accuracy indices in percentage for forecasting all track conditions. 

 
Track 

conditi
on 

EKF On 

Adhesion coefficient Slip ratio Yaw rate (rad/sec) 

A 
rms 

(Sim) 
J 

(%age) 
A 

rms 
(Sim) 

J 
(%age) 

A 
rms 

(Sim) 
J 

(%age) 

Track 
Transit

ion 

Simulin
k 

0.0036 

0.072 

5.042 
3.2257e-6 

0.0133 

0.024 
5.7857e-5 

0.0049 

1.180 

FPGA 
Zynq 

0.0038 5.274 
6.0455e-4 

4.535 
5.7846e-5 

1.178 

FPGA 
Sparta

n-3 

0.0038 5.275 
6.0725e-4 

4.555 
8.1720e-5 

1.664 

Table 4: Percentage-based relative accuracy indices 

 

The relative accuracy indices in the percentage are maximum up to 5%, as can be 

seen in the above table, and this supports the estimator's efficiency. As shown in Figs. 

08 and 09, the rms error in percent of adhesion coefficient and slip ratio in both FPGA 

platforms is considerable. The adhesion coefficient and slip ratio are extremely 

ephemeral due to lateral track imperfections. The error of yaw rate in greasy and 

extremely slippery conditions is considerable in Spartan-3 FPGA, as can be observed 

by zooming into Fig. 10. Complex computation procedures involving tangent inverse 

functions and square roots are the cause of this inaccuracy. The EKF that was created 

using Simulink and implemented on two FPGAs has an adequate overall estimation 

accuracy. Based on the relative accuracy indices provided in Table 4 and the findings 

of Figures 08 to 10, it can be concluded that the Zynq-7000 FPGA, which is based on 

myRIO-1900, performs better than the Spartan-3 FPGA, which is incorporated on 

sbRIO-9632. 

 

4  Conclusions 
 

In this work, the behavior and response of the entire model—which consists of a 

railway wheelset and an EKF-based estimator—developed in MATLAB are evaluated 

using Simulink, a Xilinx Spartan-3 FPGA device integrated into an NI sbRIO-9632 

single board controller, and a Xilinx System-On-Chip Zynq FPGA chip built into a 
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computer-based national instrument board myRIO-1900. In order to examine the 

wheelset parameters estimation accuracy of EKF when the track conditions changed 

from highly slippery to dry conditions and vice versa during vehicle operation, the 

analysis was conducted for 100 seconds of railway vehicle operation. On Xilinx Zynq 

and Xilinx Spartan FPGAs, the Simulink-based EKF is synthesized for functional 

verification in the accelerating and decelerating operation modes of railway vehicles. 

Relative accuracy indices are used to quantitatively assess performance, and it is 

shown that these indices are maximum in percentage terms up to 5%. Overall, it is 

discovered that the Spartan-3 FPGA integrated on sbRIO-9632 performs worse than 

the Zynq FPGA based on myRIO-1900. Consequently, the best FPGA 

implementation of EKF for estimating railway wheelset parameters is Xilinx System-

On-Chip Zynq FPGA. 
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