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Abstract 
 

Structural health monitoring has gained popularity in recent years with the 

technological advancement of sensor technology and data transmission via cloud 

computing. In the field of railway systems, structural health monitoring is becoming 

increasingly dynamic and interdisciplinary. This complexity makes it challenging for 

researchers to determine the current trends, identify research gaps, and understand key 

concepts. This paper presents a fast and systematic approach to conducting a 

bibliometric analysis of structural health monitoring methods applied to railways, 

aiming to give readers an overall understanding of the field. Utilizing data spanning 

from 2015 to 2023 from the Web of Science, this study identifies key publications, 

researchers, and institutions on the subject. Moreover, CiteSpace was used to provide 

intuitive visuals that reveal partnerships between institutions and emerging areas of 

research through clustering algorithms. The analysis indicates that structural health 

monitoring in railway applications will increasingly embrace interdisciplinarity, with 

an emphasis on data-driven methods such as deep learning and big data analytics. 

Although this application is specific, the step-by-step process aims to assist 

researchers in identifying promising areas and facilitating the literature review 

process. 
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1  Introduction 
 

This study evaluates the state of research related to structural health monitoring 

(SHM) applied to railways. Bibliometric data was collected from Web of Science 

(WoS) from the beginning of 2015 to the end of 2023 and visualized using CiteSpace. 

Learning about a research topic can be challenging, particularly without 

background knowledge, initial intuition, or a methodological approach. Simply 

“winging it” often proves inefficient, wasting valuable time that could be better 

spent on more important tasks. Scientometrics provides a quantitative tool to assess 

the importance of scientific publications, the interrelationships between authors or 

institutions, and the evolution of the research area over time. 

The main objective of this paper is to offer a comprehensive guide for 

researchers interested in exploring structural health modeling for railway systems. 

Additionally, this paper seeks to assist emerging researchers in identifying novel 

topics and broadening existing ones. To accomplish this, the paper addresses the 

following questions: 

1. Who are the main authors making significant contributions to the field? 

2. Which papers are the most important? 

3. Within structural health monitoring, which subjects or research areas are 

essential to understand? 

4. Which institutions are leading in the realm of structural health monitoring 

for railway systems? 

5. What are the current emerging trends and research hotspots? 
 

  

2  Methods 

This section will introduce the softwares used for the bibliometric study. 

 

2.1 Web of Science 

Web of Science (WoS) is one of the primary multidisciplinary research 

databases used for academic and research purposes. It enables the user to trace the 

citation history of articles and provides insights and visual illustrations that show the 

impact and progression of research over time. Researchers frequently use it for 

literature reviews, citation analysis, and monitoring scientific trends in research 

areas. 

Using WoS, a series of keywords is chosen to filter the database and generate 

the dataset of works related to structural health monitoring applied to railways. 

These keywords are as follows: Topic: (“condition monitoring” OR “structural 

health monitoring” OR “drive-by monitoring” OR “asset monitoring” OR “track 

monitoring” OR “road monitoring” OR “bridge monitoring” OR “condition-based 
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maintenance” OR “remaining useful life” OR “RUL” OR “fault detection” OR 

“anomaly detection” OR “damage detection” OR “prognostic” OR “track defect” 

OR “data-driven” OR “on-board monitoring” OR “onboard monitoring” OR 

“vibration monitoring”). From this list, only papers containing the word “railway” 

were selected. After this step, additional filters were applied to include only works 

in the English language and publications between 2015 and 2023. This process 

yielded a total of 1,628 papers at the time of this research. This bibliometric dataset, 

complete with full records and cited references, was analysed inside WoS before 

being exported as plain text files for use in CiteSpace. 

Figure 1 illustrates the changing popularity of research related to structural 

health monitoring applied to railways over time. There has been a steady increase 

in both citations and the number of publications throughout the years. 

 

 

Figure 1: Research trend of structural health monitoring applied to railways between 

2015 and 2023. 

 

2.2 CiteSpace 

 

Citespace is a software developed in Java by Dr. Chen Chaomei [1]. It offers insights 

into specific research areas and helps address questions that the user might have about 

their area of interest. Examples of such questions are provided at the end of Section 

1.  

 

CiteSpace (version 6.2. R4) was employed to visualize certain facets of the data 

that WoS struggles to display, such as research hotspots, collaborations between 

institutions, and co-citations, among others. It achieves this by utilizing clustering 
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algorithms to produce visual maps and tables that emphasize the desired 

characteristics. The two main components of these maps are nodes and links [2]: 

 

1. Nodes: These represent the objects the user wishes to analyze, such as cited 

authors, keywords, cited references, and the researcher’s institution. They are 

depicted as concentric circles with varying colors. The node’s size indicates 

its importance and nodes situated closer together might signify a high co-

citation or close areas of research. Red rings highlight nodes that have 

experienced a sudden burst of popularity over time, suggesting they might be 

more important than others;  

2. Links: They describe the relationships between nodes. The link’s size 

indicates the strength of the relationship.  

 

CiteSpace’s features can be summarized into five main functions [1,2]:  

 

1. Co-citation analysis: Papers frequently cited together in another paper are likely 

related in content, scope, or theme. Analyzing co-citation can pinpoint specific 

topics or research frontiers;  

2. Temporal analysis: The number of citations of an article is influenced by the time 

since its publication and the context of its release, such as its novelty and the size 

of its field’s community. Temporal analysis enables the user to observe how the 

citations or other research elements evolved, signaling potential emerging trends;  

3. Burst analysis: This function is used to detect sudden changes over time. For 

instance, a sudden and substantial increase in citations might indicate a work or 

topic that has garnered significant attention in little time, suggesting the 

importance of the paper. For a node, this is denoted as represented by a red circle;  

4. Identifying research frontiers: Analyzing recent citations can uncover emerging 

research areas or hotspots. For a node, this is indicated by a purple ring;  

5. Collaboration analysis: This function identifies researchers or institutions that 

collaborate frequently, aiding in pinpointing influential groups or institutions 

within a field.  

 

2.2 Performance metrics 

 

Within CiteSpace, different metrics are employed to quantify the importance of a node 

and the quality of the clusters formed. Depending on the objective, a particular metric 

might be more suited for addressing the intended question. The main metrics used to 

measure network performance include [1,2]:  

 

1. Mean silhouette score: This clustering metric gauges how similar a node is 

to its own cluster in comparison with other clusters. Its values range from -1 

to +1, with larger values indicating greater siomilarity among cluster 

members;  
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2. Modularity Q: This metric evaluates the quality of the network’s division into 

multiple clusters or modules. Its range is between 0 and 1. Large values 

suggest that the network has clear, distinct groups where nodes of the same 

cluster are more densely interconnected than nodes in different clusters. 

Values approaching 0 indicate that the division is as good as dividing 

randomly.  

 

It is worth noting that the silhouette score can be misleading when applied to a 

cluster with very few members. In the visualization maps, a filter was applied to 

exclude nodes with no links to other nodes and with negligible paper counts. The main 

importance metrics used to quantify the importance of a node are [1]: 

 

1. Centrality: This measures a node’s influence and how a node disseminates its 

information. An analogy for the centrality metric is comparing a tollbooth on a 

heavily trafficked highway to one with low traffic like a tollbooth on a highway 

with large traffic vs light traffic. In heavy traffic, the tollbooth serves as a more 

significant bottleneck than in light traffic, making it more crucial for traffic flow. 

A higher centrality might represent a key point of a research field or indicate a 

close relationship with other research areas (heavy traffic);  

2. Citation burst: This measured the sudden rise in a node’s popularity over a 

specific timeframe. Larger values signify sudden attention or importance in the 

research community;  

3. Sigma score: This metric merges both centrality and citation burst, considering 

the spatial aspect of centrality and the temporal aspect of the citation burst.  

 

With these metrics in mind, Table 1 shows the parameters used inside CiteSpace 

to produce the visualization maps and tables. 

 

No. Parameter name Value used 

1 Time slicing Year span from January 2015 to December 2023, 1 slice per year 

2 Term source Tile, abstract, author, keywords and keywords plus 

3 Node type Author, institution, cited reference, cited author, and keywords 

4 Selection criteria Top 10% 

5 Pruning Pathfinder and pruning sliced networks 

6 Links Default 

7 Visualization Cluster view-static and show merged network 

Table 1: Parameters used for bibliometric analysis inside CiteSpace. 
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3  Results 
 

The results section is divided into subsections aimed at answering each specific 

question made in the introduction. These questions are:  

 

1. Who are the main authors making significant contributions to the field? 

2. Which papers are the most important? 

3. Within structural health monitoring, which subjects, or research areas, are 

essential to understand? 

4. Which institutions are leading in the realm of structural health monitoring 

for railway systems? 

5. What are the current emerging trends and research hotspots? 

 

3.1 Who are the main authors making significant contributions? 

 

The top 20 most influential authors in terms of the number of publications are shown 

in Table 2. The list shows that these authors have a relatively narrow range of 

contributions, ranging from 11 to 21. Clive Roberts leads with 21 publications, 

followed by You-Liang Ding with 19 publications. Around one-third of the total 

research output in this domain is given by the top 20 authors, which is significant. 

The railway sector inside structural health monitoring is a niche sector, which is a 

possible reason for the lower number of publications compared to other similar 

sectors such as structural health monitoring of wind turbines. 

 

 

No. Author Count Percentage 

(%) 

No. Author Count Percentage 

(%) 

1 Roberts C 21 1.289 14 Ni YQ 13 0.798 

2 Ding YL 19 1.166 15 Wang J 13 0.798 

3 Kaewunruen S 18 1.105 16 Zhang Y 13 0.798 

4 Núñez A 18 1.105 17 Calçada R 12 0.737 

5 Jiang B 17 1.044 18 Li Q 12 0.737 

6 Stewart E 17 1.044 19 Liu J 12 0.737 

7 Wang P 17 1.044 20 Wei XK 12 0.737 

8 Dollevoet R 15 0.921 21 Zhang WH 12 0.737 

9 Li ZL 15 0.921 22 Bruni S 11 0.675 

10 Liu ZG 15 0.921 23 Entezami M 11 0.675 

11 Ribeiro D 14 0.859 24 Jia LM 11 0.675 

12 Zhao HW 14 0.859 25 Obrien EJ 11 0.675 

13 He Q 13 0.798     

    Sum   35.91 

Table 2: Top 20 active authors of structural health monitoring for railway systems. 
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3.2 Who are the main authors making significant contributions? 

 

Table 3 shows the top 12 most important articles based on the citation number. The 

paper with the most citations was from Hodge et al. [3] with 294 citations, followed 

by de Bruin et al. with 193 citations. Chen et al. [4] has the highest number of citations 

per year, with 91.5, indicating its importance in the field despite being the most recent 

paper of the table. The interdisciplinary nature of structural health monitoring in the 

railway sector was highlighted by the papers, where topics such as wireless sensor 

networks, deep learning, and big data analytics are all present. 

 

No. Author Title Count Year DOI Citations 

per year 

1 Hodge et 

al. [3] 

Wireless Sensor Networks for Condition 

Monitoring in the Railway Industry: A 

Survey  

294 2015 10.1109/TIT

S.2014.2366

512   

32.67 

2 de Bruin et 

al. [5] 

Railway Track Circuit Fault Diagnosis 

Using Recurrent Neural Networks   

193 2017 10.1109/TN

NLS.2016.2

551940 

27.57 

3 Chen et al. 

[4] 

Data-Driven Fault Diagnosis for Traction 

Systems in High-Speed Trains: A Survey, 

Challenges, and Perspectives 

183 2022 10.1109/TIT

S.2020.3029

946 

91.5 

4 Wang et al. 

[6] 

Sparsity guided empirical wavelet 

transform for fault diagnosis of rolling 

element bearings 

165 2018 10.1016/j.y

mssp.2017.0

8.038 

27.5 

5 Ghofrani et 

al. [7] 

Recent applications of big data analytics 

in railway transportation systems: A 

survey 

157 2018 10.1016/j.trc

.2018.03.010 

26.17 

6 Wu et al. 

[8] 

Incipient winding fault detection and 

diagnosis for squirrel-cage induction 

motors equipped on CRH trains 

156 2020 10.1016/j.isa

tra.2019.09.

020 

39 

7 Sahal et al. 

[9] 

Big data and stream processing platforms 

for Industry 4.0 requirements mapping for 

a predictive maintenance use case 

132 2020 10.1016/j.jm

sy.2019.11.0

04 

33 

8 Weston et 

al. [10] 

Perspectives on railway track geometry 

condition monitoring from in-service 

railway vehicles 

129 2015 10.1080/004

23114.2015.

1034730 

14.33 

9 Gou et al. 

[11] 

An Open-Switch Fault Diagnosis Method 

for Single-Phase PWM Rectifier Using a 

Model-Based Approach in High-Speed 

Railway Electrical Traction Drive System 

116 2016 10.1109/TP

EL.2015.246

5299 

14.5 

10 Neves et al. 

[12] 

Structural health monitoring of bridges: a 

model-free ANN-based approach to 

damage detection 

114 2017 10.1007/s13

349-017-

0252-5 

16.29 

11 Bešinović 

et al. [13] 

Resilience in railway transport systems: a 

literature review and research agenda 

101 2020 10.1080/014

41647.2020.

1728419 

25.25 

12 Feng et al. 

[14] 

Model Updating of Railway Bridge Using 

In Situ Dynamic Displacement 

Measurement under Trainloads 

101 2015 10.1061/(AS

CE)BE.1943

-

5592.000076

5 

11.22 

Table 3: Top 12 references for structural health monitoring applied to railways. 
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3.3 Which institutions are leading in the realm of structural health monitoring 

for railway systems? 

 

 

 

To identify the most influential institutions, an institution co-authorship network was 

created. This network boasts a modularity Q of 0.6442 and a mean silhouette score of 

0.7, suggesting good clustering performance. 

 

 

 

Table 4 enumerates the top 20 most prominent institutions. It can be observed that 

Southwest Jiaotong University holds the top position with 140 publications, followed 

closely by Beijing Jiaotong University in the 2nd spot 125 publications. Notably, both 

are world-renowned Chinese universities.  

 

 

 

Figure 2 shows the visualization network of the institution co-authorships, 

highlighting the top 4 members of each cluster. Over the years, a discernible trend has 

emerged: there’s a rise in co-citations among universities specializing in different 

fields. In Figure 2a, the co-citations between institutions in 2016 appear sparse 

compared to the denser network depicted in Figure 2b. Beyond this trend, the field of 

structural health monitoring seems to be evolving towards greater interdisciplinarity. 

This is evident from the growing links between institutions from different clusters. 

While all nodes are associated with structural health monitoring in railways in some 

capacity, each cluster has its unique characteristics. The fusion of different specialties 

seems to be an emerging pattern. 

 

 

 

 

3.4 What are the research hotspots? 

 

Using the same keyword network shown in Section 3.3., Table 5 was generated to 

show the top 25 keywords with the most citation bursts. Comparing the early years 

(2015-2017) to the later years (2020-2023), there has been a shift from modelling and 

prognostics, which are foundational concepts, to more advanced and specific 

computational techniques such as neural networks, unsupervised learning, and 

concepts such as digital twins. This can be visualized by the horizontal bar contained 

in the table, where red indicates a burst of citations, blue indicates a normal number 

of citations while the faded-out blue shows a lower number of citations. Note that 

digital twins only started to gain substantial traction in the railway sector from 2021, 

while deep learning started in 2019 and became a hotspot from 2021 onwards. 
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No. Institution Average 

publication 

year 

Count Percentage 

(%) 

No. Institution Average 

publication 

year 

Count Percentage 

(%) 

1 Southwest 

Jiaotong 

University 

2016 140 8.60 11 Helmholtz 

Association 

2017 20 1.23 

2 Beijing 

Jiaotong 

University 

2015 125 7.68 12 City 

University 

of Hong 

Kong 

2017 19 1.17 

3 University of 

Birmingham 

2015 60 3.69 13 Tsinghua 

University 

2015 19 1.17 

4 Delft 

University of 

Technology 

2015 46 2.83 14 ETH Zurich 2020 19 1.17 

5 Polytechnic 

University of 

Milan 

2015 43 2.64 15 Tongji 

University 

2021 17 1.04 

6 Southeast 

University - 

China 

2015 33 2.03 16 German 

Aerospace 

Centre 

(DLR) 

2017 15 0.92 

7 Universidade 

do Porto 

2015 27 1.66 17 Central 

South 

University 

2019 14 0.86 

8 Lulea 

University of 

Technology 

2016 27 1.66 18 Norwegian 

University 

of Science & 

Technology 

(NTNU) 

2016 13 0.86 

9 Swiss Federal 

Institutes of 

Technology 

Domain 

2015 24 1.48 19 Harbin 

Institute of 

Technology 

2021 13 0.86 

10 Hong Kong 

Polytechnic 

University 

2016 23 1.41 20 University 

College 

Dublin 

2017 12 0.80 

     Sum    44.56 

Table 4: The top 20 universities in terms of number of publications 
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a)  

 
b)  

 
Figure 2: Visualization network map of institution co-authorship; (a) Highlight of 

the most frequent co-authorships of 2016. (b) Highlight of the most frequent co-

authorships of 2022. 
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No. Keyword Strength Start End Year (2015-2023) 

1 models 3.59 2015 2017  
2 prognostics 3.42 2015 2020  
3 fault detection and 

isolation 

3.07 2015 2017 
 

4 wireless sensor networks 3.07 2015 2017  
5 parameters 4.11 2017 2018 

 
6 speed 3.54 2017 2018 

 
7 energy harvesting 3.08 2017 2018 

 
8 empirical mode 

decomposition 

3.53 2018 2020 
 

9 decomposition 2.99 2018 2018 
 

10 model 2.97 2018 2018 
 

11 defect detection 4.08 2019 2020 
 

12 damage 3.61 2019 2019 
 

13 neural networks 5.49 2020 2021 
 

14 rail transportation 3.78 2020 2021 
 

15 railway track 3.44 2020 2020 
 

16 feature extraction 5.76 2021 2023 
 

17 temperature 4.00 2021 2023 
 

18 vibration 2.89 2021 2021 
 

19 convolutional neural 

network 

2.79 2021 2021 
 

20 data driven 2.79 2021 2021 
 

21 neural network 4.28 2022 2023 
 

22 deep learning 4.08 2022 2023 
 

23 unsupervised learning 3.92 2022 2023 
 

24 digital twin 3.22 2022 2023 
 

25 anomaly detection 3.18 2022 2023 
 

Table 5: Top 25 keywords with the most citation bursts from 2015 to 2023. 
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The highest strengths can be seen with feature extraction with 5.76 and neural 

networks with 5.49, both concepts intimately related to deep learning. Feature 

extraction, specifically, is about transforming measured data into features that can 

clearly distinguish between normal and abnormal conditions. This is done 

automatically with convolutional neural networks for example, which is item 19 of 

Table 7 

 

Figure 3 shows a timeline view of the clusters identified by the keyword network 

(Table 5). Each horizontal line shown is a timeline for a specific cluster. From left 

to right, the year increases from 2015 to 2023. The size of the circle represents the 

nodes importance. If the color red is present, then it shows that this specific node 

had a citation burst. It can be seen that the largest number of citation bursts occurred 

in the deep learning cluster, as shown by the larger number of red circles in Figure 

3. Therefore, it is likely that the future of SHM for railway systems will involve 

using deep learning and machine learning models even more to solve SHM and 

predictive maintenance problems. 

 

 

Figure 3: Timeline view of the keyword citation bursts that occurred between 2015 

and 2023. 

 

4  Conclusions and Contributions 

 

Structural health monitoring has continued to gain popularity over the years and has 

become a dynamic and evolving field of research. This paper provides a systematic 

approach to conducting a bibliometric analysis of SHM methods applied to railways, 
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aiming to give the reader a general view of the field. Furthermore, this study helps 

identify research gaps, research hotspots and future research directions. 

 

Bibliometric data were collected from Web of Science (WoS) database, that 

spanning from 2015 to 2023 using filters and keywords. After analyzing the data, the 

following key conclusions were drawn: 

 

1. The leading universities in the field are Southwest Jiaotong University with 

140 publications, and Beijing Jiaotong with 125 publications, ocuppying the 

first and second spots, respectively. In total, they correspond to 16.28% of all 

publications in the field;  

2. The knowledge clusters of SHM applied to railways are divided into 6 

categories: condition monitoring, deep learning, structural health monitoring, 

damage detection, predictive maintenance, railway track and algorithms;  

3. Collaboration between institutions has increased from 2015 to 2023 and is 

becoming more interdisciplinary, meshing traditional engineering concepts 

with deep learning and data analytics.  

4. Data-driven methods and concepts (deep learning, neural networks, feature 

extraction, unsupervised learning), anomaly detection and digital twins are 

research hotspots at the end of 2023, with a trend of it becoming more popular 

over time.  
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