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Abstract

The aim of the work presented here is the inverse identification of the railway tracks
irregularities and more precisely the lateral offset using a railway dynamics software
with measured irregularities as inputs. The broader goal is to use on-board sensors
to identify track irregularities for the purpose of facilitating the maintenance of the
railways. First of all, this identification involves the search for statistical correlations
with the train’s accelerations and other irregularities. Then, an estimator is constructed
in order to create an a-priori on the lateral offset irregularity.
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1 Introduction

Nowadays, the challenges facing the railway industry are numerous: the opening up
to competition, the arrival of European companies on the French rail network, as well
as the increasing economic and environmental constraints are driving the french rail-
way company SNCF to innovate and strengthen its competitiveness. In this context,
understanding and controlling the mechanical behavior of trains on railroad tracks is
essential. In particular, estimating track irregularities (which are shown in figure 1) is
crucial in order to organize maintenance operations as effectively as possible and thus
guarantee the smooth running of the system.

The present work proposes a method for estimating the lateral offset track irregu-
larities from wheelsets accelerations. The developments are illustrated by a numerical
experiment: the lateral offset is estimated from simulated train accelerations. This
work represents one step towards the reconstruction of railway track irregularities
from on-board accelerations using on-board sensors on commercial trains which is
our final goal. The track design is supposed to be perfectly known as well as the me-
chanical model of the train and the speed of the circulation. It will also be assumed
that vertical offset and crosslevel can be accurately identified [1].

Figure 1: Classification of track geometric irregularities

Lateral offset will be estimated in three steps. First of all, statistical dependencies
with the vertical offset and cross-level irregularities and the dynamic reactions of the
studied train are estimated on a base of measured and /or simulated data. These depen-
dencies are then exploited to build a first estimate of the lateral offset by conditioning
the distribution previously obtained by the identified vertical offset, cross-level and
train response on studied track portions. Finally, this first estimate will be refined
by solving the inverse problem described in figure 2. This consists in an optimiza-
tion problem where we must find the lateral offset which gives the closer dynamical
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Figure 2: Direct & inverse problems diagram

response to the reference response [2–8].

Solving this problem presents several difficulties. The first is induced by the high
degree of non-linearity of the system, and in particular of the contact between the
wheel and the rail. Second, the quantities sought are functional. Therefore, dimension
reduction and meta-modeling will be implemented [9, 10].

2 The Method

2.1 Problem definition and notations

The goal of this work is to identify d3, the lateral offset of the studied track from
the simulated reactions of the train Y to real measured track irregularities d. More
precisely, we are going to identify the section d3[S, S + l[ of length l from the ac-
celerations of the different bodies of the train computed by a railway dynamic code.
However, the reactions Y [S, S + l[ observed on the track section depend on the pre-
vious dynamics and in particular on the track geometry of the previous section d[0, S[.
In this initial work, we will therefore consider the geometry d[0, S[ as known. A re-
cursive approach will be adopted later to address the industrial issue.

Regarding the vertical irregularities of the track, a straightforward method to iden-
tify them is to utilize the displacements given by the software which are included in Y .
The vertical displacements of the wheels can give a very good estimate of the vertical
offset irregularity d1 and the cross-level irregularity d2 [11]. Thus, these vertical ir-
regularities of the track are going to be considered perfectly known. Other parameters
and data regarding the initial design of the tracks like vertical offset and cross-level,
the train model used and its speed will be considered to be perfectly known throughout
our experiments and are going to be written as U .

Having specified what we consider known and what we are trying to identify, we’re
interested in the following railway dynamics model which is the non-linear transient
analysis of our software.

(d[0, S + l[,U) → Y (d[0, S + l[,U) (1)

Consider the following notations:
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Figure 3: Known and unknown variables on the curvilinear abscissa

• s is the curvilinear abscissa over the considered zone of length S ′. The vectors
mentioned are discretizations in space on M points such that:
d1 := {d1(si)/ s1, ...sM ∈ [0, S ′[}, d1

prev := {d1(si)/ s1, ...sN ∈ [0, S[}
d1

ref := {d1(si)/ sN+1, ...sP ∈ [S, S + l[}

• U : the vector containing the parameters of the track design, the train’s model
and the speed of the vehicle. It is considered known.

• d :=
{
(d1,d2,d3,d4)

}
the rail irregularities in the following order: vertical

offset, cross level, lateral offset and gauge.
dprev :=

{
(d1

prev,d2
prev,d3

prev,d4
prev)

}
the track irregularities on the section of

the track preceding d. It is considered known.

• Y : the positions and accelerations of the train bodies. n the number of signals
characterizing the train’s kinematics.
Y := {(Yj(si)) / j ∈ [1, n], s1, ...sM ∈ [0, S ′[}

• Z := (Y ,d1,d2,d3
prev,d3

ref) the vector resulting from the concatenation of
the known irregularities vectors and train response data. To simplify notation,
we’ll also define the vector Z−3 = (Y ,d1,d2,d3

prev).

For a given railway journey and a given train U , the goal of this work is to identify
the lateral offset on the studied portion of the railway track d3

ref. Having the train’s
kinematics Y , we will first estimate the vertical offset and the cross level irregularities
d1 and d2 and then use all the known data we have to estimate the lateral offset.
This first estimate is then going to be used as a starting point or an a-priori in an
optimization. This optimization consists in the search of the lateral offset d⋆

3 that
gives the closest train reaction to the reference reaction.

2.2 Estimation of the vertical offset and of the cross-level

The first and most intuitive approach to the identification of the vertical track irregular-
ities is by assuming that the axles follow perfectly the rail. The position of the wheels
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represented here by the vertical position of the center of mass of the axle zaxle and
its absolute roll angle θaxle is therefore assimilated to the real vertical positions of the
rail. The vertical irregularities therefore result from comparing these displacements to
the rail track design, which is represented by its vertical offset ztrack and cross-level
angle θtrack.

d∗
1 = zaxle − ztrack (2)

d∗
2 = Dsin(θaxle)−Dsin(θvoie) (3)

with d∗
1 the identified vertical offset irregularity, d∗

2 the identified cross-level offset
irregularity and D the distance between the left and right contact points between the
axe and the rail which is assumed to be constant.

2.3 Constitution of the a priori

In order to expose the cross-correlations between Z3 and Z−3, we will start by com-
puting the empirical autocovariance matrix of Z. The autocovariance matrix is esti-
mated using a database of d irregularities, consisting of numerous measurements on
french high speed lines. The database was divided into training and test sets so that the
same section of track measured at different times was not in both sets. Using numeri-
cal simulation, the Y associated with the measured irregularities needed to complete
this database were calculated. All variables are centered and reduced prior to these
calculations. We construct here the empirical mean µ0 and variance C0 of Z :

µ0 =
[
µ−3,µ3

]
, (4)

C0 =
1

n

n∑
i=1

ZiZ
T
i −µ0µ0

T =

[
V ar(Z−3) Cov(Z−3,d3)

Cov(d3,Z−3) V ar(d3)

]
=

[
C1 C12

CT
12 C2

]
,

(5)
To create our a priori on d3

ref, we’ll use a linear MMSE estimation [12]. The created
operator uses the identified vertical irregularities, the known previous lateral offset
and the displacements and accelerations of bodies of the train Z−3

⋆ to give us the
first moment µc of the law of d3

ref|Z−3
⋆. The second moment is deduced from the

computed covariance matrices and is noted Cc. These are expressed as follows :

µc = µ3 +C12
TC1

−1(Z−3
⋆ − µ−3), (6)

Cc = C2 −C12
TC1

−1C12, (7)

Due to problems with the conditioning of the matrix to be inverted C1, we had to use
a reduced basis. Using SVD, we created a reduced basis for Z−3 and another for d3,
so as to keep 99.99% of the variance and thus eliminate redundancies in the signal that
reduce the rank of the covariance matrix. The transition matrices to the reduced bases
are respectively P1 and P2 so that P =

[
P1,P2

]
.
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Z−3,rb = P1Z−3 ; d3,rb = P2d3 ; Zrb = PZ (8)

Equations 5 and 8 become :

C0,rb = PC0P
T =

[
C1,rb C12,rb

CT
12,rb C2,rb

]
, (9)

Thus the estimated lateral offset and its variance can be written as follows :

µc = µ3 + P2
TC12,rb

TC1,rb
−1P1(Z−3

⋆ − µ−3), (10)

Cc = P2
T (C2,rb −C12,rb

TC1,rb
−1C12,rb)P2, (11)

We have therefore created a linear MMSE estimator for the lateral offset.

µc = d̂3MMSE(Z−3
⋆) (12)

3 Results

3.1 Identification of vertical offset and cross-level irregularities

A numerical experiment is carried out where real measured track irregularities and
track designs measured on the French high speed railway network are used. The
acceleration signals of the axles given by our software are then integrated twice to
obtain its displacements. Then, these displacements are compared to the track design
data as explained in 2.2.
The signals are pre-filtered by a rectangular high-pass filter with a cut-off frequency of
λc = 500m to eliminate signal drift. The operation results in reasonable identification
errors relative to the amplitude of the irregularities (see figures 4 and 5). with RMSE
errors of ϵd1 = 0.155mm and ϵd2 = 0.204mm. Compared to the real irregularities,
these errors have orders of magnitude several tens of times smaller.

3.2 Constitution of the a priori on the lateral offset

As in 3.1, we use as inputs to the software real track irregularities and design. The
resulting simulated dynamical response of the elements of the train Y as well as the
considered know irregularities will be used to try and identify the lateral offset d3

ref

used as input. Hereunder in figures 6 and 7 are shown examples of the reference
lateral offset and the result given by the linear estimator µc. On figure 6, we show
two examples on different portions of the railway track in curve and on figure 7 two
examples in alignment.
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Figure 4: Vertical offset and cross-level irregularities identification from axle acceler-
ations in curve

Figure 5: Vertical offset and cross-level irregularities identification from axle acceler-
ations in alignment

We have tested our linear estimator on the test dataset and computed the average
and the standard deviation of the root mean square error separately on both curved and
aligned portions of the track. The results are in table 1. On a curved track, we get an
average error of ϵd3 = 1.16mm with a standard deviation of σ = 0.35mm and on an
aligned track, an error of ϵd3 = 0.76mm and a standard deviation of σ = 0.18mm.

Track curvature Curved Aligned
RMSE (mm) 1.16 0.76

σ(RMSE) (mm) 0.35 0.18

Table 1: RMSE errors and the standard deviation on the identification of d3
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Figure 6: Examples of linear prediction of lateral offset from axle accelerations and
known irregularities in curve.

Figure 7: Examples of linear prediction of lateral offset from axle accelerations and
known irregularities in alignment

4 Concluding remarks

In conclusion, we have used the statistical dependencies between measured track ir-
regularities and simulated train dynamical responses to construct a linear operator
intended to estimate the lateral offset track irregularities. The performance of the con-
structed operator was evaluated on a test database and has given promising results.

This first estimation is already a valuable tool for optimizing maintenance strate-
gies and ensuring the operational integrity of railway systems. However, to ideally
run the maintenance, a more refined prediction is needed. The current model, while
promising, may benefit from further fine-tuning. For this reason, the variance asso-
ciated with the estimator is going to be used next as the search space to refine the
accuracy of the estimation of the lateral offset via the setting up of an optimization
problem. The optimization problem is a complex one as it involves the creation of a
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cost function which compares the response of the train with the reference response.

Furthermore, in parallel to this work and in order to implement the desired solution
on commercial trains, we are working on the processing of axle-box acceleration as
the measured accelerations need to be expressed in the same reference frame as the
simulated ones.
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