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Abstract 
 

High-speed train structures operate under time-varying conditions, which poses a 

significant challenge in the field of PHM due to uncertainties introduced in the 

extraction of damage indexes from signals. This paper presents a new fatigue crack 

size quantification method based on information entropy unde variable temperature 

environment. Two new information entropy are proposed: energy singular spectral 

entropy (ES) and power singular spectral entropy (PS). The baseline Gaussian mixture 

model is constructed on the information entropy acquired under time-varying 

temperature when the structure is in a healthy state. The on-line Gaussian mixture 

model is constructed through the online update mechanism of moving feature sample 

set. The minimum matching Kullback–Leibler (KL) distance of the probability 

component is used to quantitatively characterize the cumulative migration trend of the 

Gaussian mixture model under damage to realize damage detection. The framework 

proposed in this paper is applied to Lamb wave data collected from fatigue crack 

experiments under variable temperature environment. The experimental results verify 

the reliable fatigue crack detection performance of Gaussian mixture model-KL 

method under variable temperature environment. 
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1  Introduction 
 

Structural health monitoring (SHM) is a crucial technology used to tackle safety 

and maintenance issues of high speed trains.[1]. Plate- and pipe-like aluminum alloy 

structures have been widely used in high speed trains, according to the advantage of 

light weight, high strength and corrosion resistance[2]. Due to the dynamic loading, 

material defects, improper installation and severe service environment exposure, the 

aluminum alloy structures naturally tend to fatigue cracks growth[3]. The fatigue 

damage will harm the structural integrity and even cause fateful consequence. 

Therefore, it is of great significance to study the damage monitoring technology under 

time-varying environment for improving the operation stability of high-speed trains. 

Lamb waves (LW) have shown great potential in SHM of high-speed trains. A large 

number of studies have used LW for damage identification. The traditional LW 

detection method extracts the damage indexes, and uses the damage index to 

quantitatively characterize the crack length [4][5]. Chen proposed a nonlinear Lamb 

wave detection system[6]. Yuan et al. used the piezoelectric transducers (PZTs)-based 

active Lamb wave method to conduct online crack monitoring. They proposed 

deterministic resampling particle filter for fatigue crack growth prediction, which can 

overcome the sample impoverishment problem[7]. Wang et al. presented the method 

of physical and virtual time reversing of nonlinear Lamb waves for fatigue crack 

detection and quantification[8]. Lu et al. proposed a Lamb wave matching pursuit 

algorithm to overcome fatigue crack quantification[9]. As a consequence, the diverse 

Lamb wave inspection approaches show great potential for fatigue crack detection. 

The effectiveness of Lamb wave for fatigue crack monitoring has been 

demonstrated in previous studies. However, due to the complexity of wave 

propagation across cracks, few investigations have focused on the impact of 

temperature. Temperature is one of the main environmental factors that can affect the 

practical application of Lamb wave-based structural health monitoring (SHM), as it 

can alter the wave velocities and amplitudes. Moreover, ambient temperature can 

interfere with the detection of real damage information and reduce the reliability of 

the results. Therefore, it is crucial to address the effect of temperature on guided waves 

to enhance the practical applicability of Lamb wave-based SHM. It needs to be 

combined with other mathematical analysis methods to achieve the purpose of better 

extraction of damage indexes. Information entropy can be combined with a variety of 

signal decomposition algorithms and mathematical analysis methods[9-11]. 

Therefore, many scholars establish information entropy based on time domain and 

frequency domain analysis methods to characterize the fault characteristics of signals. 

Information entropy is a combination of entropy and information theory and is defined 

as a measure of the uncertainty of an event[10]. It can be used as a signal feature to 

describe the amount of information transmitted by the signal. Ma Hassan[11] and 

others adopted the feature extraction method of wavelet decomposition and a 

combination of Shannon entropy and the cross bispectrum, resulting in the extracted 

features retaining more complete fault information. Shi Guoliang[12] used 

permutation and combination entropy as feature vectors for fault classification and 
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fault identification. Damage indexes based on information entropy can often contain 

more kinds of information and better characterize fault information. Therefore, 

different information entropies will be established in this paper to achieve effective 

damage indexes for Lamb wave signals under time-varying temperature. Probability 

and statistics techniques have been applied to mitigate the impact of temperature on 

LW-based SHM. For instance, the Gaussian mixture model (GMM) has shown great 

potential in detecting damage under environmental variations [13][14]. Wang et al. 

established Gaussian mixture models to reconstruct various fault signals in the phase 

space, and then used these models to classify bearing faults[15]. QIMA et al. proposed 

a new method based on Dirichlet process Gaussian mixture model (DP-GMM), and 

developed a new feature vector for structural health monitoring in time-varying 

environment[16]. 

Due to the complexity of Lamb waves, dispersion and multimodal effects and time-

varying temperature, there are many uncertain problems. Therefore, it is necessary to 

adopt the damage index with high robustness and more information to improve the 

precision of GMM. GMM with high accuracy, multiple indicators and strong 

robustness is expected to solve the problem of variable temperature crack monitoring. 

Inspired by this, a damage detection method based on GMM using information 

entropy is developed in this paper towards accurate detection of fatigue crack growth 

over a wide range of temperature variation. In this method, two new information 

entropy ES and PS are proposed based on EEMD and SSA algorithm. The GMM 

using information entropy under the influence of time-varying temperature is 

established. To enable online tracking of damage progress, the proposed method 

incorporates an update mechanism that utilizes the mobile feature set and internal 

probability of the GMM. The updated probability can then be used to continuously 

monitor the damage progression in real-time. The effectiveness and precision of the 

method are demonstrated through a fatigue crack monitoring test that involves time-

varying temperature.  

The structure of this paper is as follows. the information entropy measures ES and 

PS is presented in Section 2. the in-depth introduction to the GMM and KL is provided 

in Section 3. The fatigue crack detection test conducted under time-varying 

temperature is discussed in Section 4.  the conclusions drawn from this study in 

Section 5. 
 

2 Information entropy of Lamb wave 

 
The calculation process of the two new information entropy is mainly divided into 

two parts Ensemble Empirical Mode Decomposition (EEMD) [17]and Singular 

Spectrum Analysis (SSA) [18]. The algorithm can adaptively decompose the complex 

signal into several Intrinsic Mode Functions (IMF) [19][20], and the decomposed IMF 

components can reflect the local characteristic information of the original signal at 

different time scales. The mean value of IMF component obtained after 

decomposition is selected as the decomposed signal. The mean value of IMF 

component can eliminate the additional noise effect and retain the useful signal 

mapped to the corresponding characteristic scale. Then these signals are analyzed by 

SSA, and the reconstructed signal sequence is obtained. The energy singular spectral 
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entropy (ES) and the power singular spectral entropy (PS) can be calculated by 

replacing the original signal with a reconstructed time series. The EEMD and SSA 

algorithm flow chart is shown in Figure1. 

 

N IMF components

Singular spectrum analysis

N reconstructed time series

Calculated energy 

entropy

Calculate power 

spectrum entropy

The energy singular 

spectral entropy is 

obtained

The power singular 

spectral entropy is 

obtained

End

Input original signal x (t)

Initialize white noise amplitude h 

and total times N

The m-th decomposition

Adding Gaussian white noise nm(t)

EMD decomposition

Get the ith IMF component Cm,i(t)

m≥N？

Start

m=m+1

EEMD SSA

Figure 1: Flow Chart of EEMD and SSA Algorithm. 
 

The information entropy extraction process of non-stationary signal in time-varying 

temperature environment is as follows: Each signal data collected from the PZT is 

continuous time series 𝑥(𝑡), which is decomposed by EEMD. n ( ) IMF t  components

( )1 IMF t , ( )2 IMF t ,..., ( )  nIMF t  are obtained by EEMD analysis of ( )x t . The 

reconstructed signal ( ), 1,2,3 ,iy t i N=  is obtained by SSA analysis of n ( ) IMF t

components. The specific calculation process of EEMD and SSA algorithm is as 

follows: Gaussian white noise n(t) is added to the original signal 𝑥(𝑡) many times. The 

m-th Gaussian white noise signal is added as： 

 ( ) ( ) ( )    (m N)mx t x t h n t= +    (1)  

where 𝑛𝑚(𝑡) is the white noise added in the m-th time, ℎ is the amplitude coefficient 

of the noise, and N is the number of EMD decomposition aggregations, generally 

taken as 100. 

EEMD decomposition is performed on the signal 𝑥𝑚(𝑡) with white noise added to 

obtain n IMF components 𝑐𝑚,𝑖(𝑡), 𝑖 ≤ 𝑛 and a residual component 𝑟m,𝑛(𝑡). When m < 
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n, repeat the above steps and add different white noise signals each time. Then the 

average value ic : 
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ic  is the final eigenmode function. SSA is performed on the IMF components, and 

an appropriate window length (2 )m m t≤ ≤ is selected. The one-dimensional signal 

sequence ( )iIMF t  is transformed into a multidimensional sequence to obtain the 

trajectory matrix X: 
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The singular value of matrix X is calculated, and it is decomposed to obtain m 

indexes and their corresponding eigenvectors: 

 ( )
1

, 1,0
m

j p

X
Y t i p j i

=

= = − + ＜＜n+1 (4) 

where when p m＜ , p p = . When 1p t m− +＞ , 1p t p = − + . When 

1m p t m  − + , p m = . 

Through the above calculation, the IMF  component is reconstituted into a new 

time series, which can replace the IMF  component as the input for calculating the 

traditional information entropy and obtaining two new information entropies PS and 

ES. 

Energy singular spectral entropy 

Energy singular spectral entropy can represent the complexity of signal energy. The 

information of different frequency bands in the signal is contained in different IMF 

components. The input of the algorithm is the IMF component of the new time series 

and the output is ES. The steps are as follows: 

Calculate the energy of each reconstructed IMF component separately: 

 
2 ( ) , 1,2, ,i iE IMF t dt i N



−
= =   (5) 

Calculate the proportion of the energy of each reconstructed IMF component to the 

total energy: 

 

 =E / Ei ip  (6) 

Calculate the ES of the signal 𝑥 (𝑡) according to p [21]: 

 

 
1

ES lg
N

i i

i

p p
=

= −  (7) 
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Power singular spectral entropy 

According to the calculation principle of ES[22], the IMF component is also time 

reconstructed, and the new time series is used to calculate the PS instead of the IMF 

component. The input of the algorithm is the IMF component of the new time series 

and the output is PS. The steps are as follows: 

Estimate the power spectrum of the reconstructed ( )iIMF t  according to the formula 

of the maximum entropy method, and obtain the corresponding power singular 

spectrum: 
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where
0a and

ma are the solutions of the Yule-Walker[22] equation 

xx

0

( ) ( ), 0
M

m xx

m

R x a R x k x
=

= − −  . 

Calculate the PS of signal[23]: 

 

 10

1

PS log
N

i i

i

 
=

= −  (9) 

 

where 
i  is the proportion of the power spectrum value of the i-th reconstructed 

IMF component in the total PS. 

Since the high-speed train is in service under the time-varying temperature 

environment, the damage indexes reflected by the signal in the time-frequency domain 

are not singular or regular. The ES and PS proposed in this paper decompose the 

original signal by EEMD and SSA, and transform the original signal of nonlinear and 

non-stationary signal into a new signal sequence with different characteristic scales. 

The information entropy eigenvalues es and PS proposed in this paper calculate the 

whole segment of signal and retain more complete fault information. Therefore, the 

ES and PS extracted in this paper can more clearly describe the fault information. 

 

3. GMM Using Information Entropy 

 
The principle of GMM damage detection based on information entropy is as 

follows. Information entropy is used to establish online GMM in the process of online 

detection. Under the influence of time-varying temperature, the probability 

distribution of the information entropy changes randomly. When crack damage occurs 

in the structure, the probability distribution of the Lamb information entropy of the 

structure exhibits cumulative migration different from that from the influence of time-

varying temperature factors. Therefore, the structural damage state can be evaluated 

by the probability distribution migration trend of the online GMM relative to the 

baseline GMM. The probability distribution migration trend of the online GMM 
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relative to the baseline GMM can be used to evaluate the structural damage state in 

the proposed method. The damage detection framework is shown in Figure 2. 

 

 
Figure 2: Damage detection framework based on GMM. 

 

3.1 GMM principle and damage detection principle 

 
According to the two kinds of information entropy obtained in the section 2, the 

damage index matrix S  is constructed, which is defined as: 

 

11 1

22 2

33 3

     

   

     

             

    

 

 K K K

SES PS

SES PS

S SES PS

ES PS S

  
  
  
  = =
  
  
     

 (10) 

Suppose there are K  LW signals in total. In the sample matrix, each row 

corresponds to a Lamb signal's damage indexes (ES, PS), and each column represents 

different signal values of a damage index.  

The GMM equation is given by equation (11):  

 ( ) ( )
1

, ,
C

K i i K i i

i

w SS
=

 = μ Σ μ Σ∣ ∣  (11) 

C represents the quantity of gas components. 
,i iμ Σ

 and iw
 are the mean, 

covariance matrix and mixing weight of Gaussian components respectively, i=1, 2, 

…C.  The probability density is expressed as (12). 

 ( ) ( ) ( )
-1

1/2/2

1 1
, exp - - -

2(2 )

T

i K i i K i K id
ii

S S S  


 
  =  

  
∣  (12) 

The two main parameters that determine the GMM are the variance iΣ and mean iμ

. To fit and update these parameters, K-means and EM algorithms are commonly used 

[24][25]. The EM algorithm is an expectation-maximization algorithm that estimates 

the missing parameters (i.e., hidden variables) in GMM, which can have multiple 

hidden variables [26]. 
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While the EM algorithm can be used to build a GMM, it needs to be updated 

with new feature vectors in online damage monitoring. However, replacing a set of 

characteristics with a single feature vector results in a slower GMM update speed due 

to its low contribution. To address this, an update mechanism based on motion feature 

set and internal probability structure has been proposed [27][28]. Proposed an update 

mechanism based on motion feature set and internal probability structure. By 

adjusting or even changing the GMM probability structure, the new feature vector can 

be tracked quickly and stably. 

In the process of online damage monitoring, to obtain a new feature vector, need 

to update the feature sample set  1 2,  , ,  KS S S S=  . The update index is expressed as 

n . The feature sample set S  is updated through the mobile update mechanism, that 

is, each time a new feature vector 
1KS +
 is added as the last (latest) sample S , 

1S is 

removed from the first (oldest) sample S . The number of updated eigenvectors 

remains unchanged.  

 

3.2 GMM Migration Index 

 
After establishing the baseline GMM and the online GMM, the offset change of the 

latter relative to the former is quantified using the KL [29]. For a 
0

i  in the baseline 

GMM
0 , the KL distance is used to quantify the probability distribution distance 

between it and a component 
n

j  in the online GMM
0  during the nth monitoring step, 

as shown in the following formula: 
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where 
0

i  and 
0

i  are the mean and covariance matrix of 
0

i . 
n

j  and 
n

j  are the 

mean vector and covariance matrix of 
n

j . n is the monitoring time. tr is the trace of 

the matrix. det represents the determinant value of the matrix. D is the sample 

dimension. 

The smaller the KL distance is, the smaller the difference between the two 

components. Therefore, the Gaussian component 
n

j  with the smallest difference 

between component 
0

i  in online GMM
n  and baseline GMM

0  can be found. The 

minimum matching KL distance of the final online GMM
n  relative to the reference 

GMM
0  is: 

 ( ) ( )
0

0 0 0

1

1

, min KL ln
K

n K n i
n i j i j n

i j
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w
=

=

 
  =   +  
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where 
0

i  and 
n

j  are the weights of components 
0

i  and 
n

j , respectively. 

The greater the difference between the online GMM and the baseline GMM is, the 

greater the probability migration index KL. Therefore, the damage state in the 

structure can be evaluated by the migration trend of the KL value. 

 

4 Fatigue Crack Monitoring Experiment Under Time-varying 

Temperature 

 

4.1 Fatigue tests and LW 

 
The specimen is made of Al 6061 is shown in Figure 3(a). The plate used in the 

fatigue crack detection test has the mechanical properties provided in Table 1. An 8 

mm hole was drilled at the center of the plate, and pre-cracks measuring 1 mm in size 

were introduced at both ends of the hole. Table 2 provides detailed parameters of PZT. 

The layout of the sensors used in the test is depicted in Figure 3(b).  

 

Table 1: parameters of aluminum plate 

Material  Density（kg/m3） 
Young's modulus（

Gpa） 
Poisson's ratio 

AL6061 2750 68.9 0.33 

Table 2 parameters of PZT 

PZT sensor model diameter (mm) thickness (mm) Density (g/m3) 

SM412 8 0.2 7.80 

 

 
(a) Details of aluminum plate specimen  

 (b) Sensor layout diagram 

Figure 3: Geometrical dimensions of aluminum plate and sensor. 
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A 2 mm thick plate was used as the test piece, and a Hanning-windowed sinusoidal 

tone burst with 4 cycles and 160 kHz was used as the excitation signal. Figure 4 

illustrates the excitation signal used in this test. 

 

 

 

Figure 4: A signal of 4 cycles and 160 kHz central frequency. This signal is 

used as the excitation signal in this study. 

 

 

 

 

The device is shown in Figure 5. Nine specimens (T1-T9) were used in this 

experiment, as shown in Figure 5(a). Different specimens were tested at different 

temperatures. T1 to T9 were tested at 

-40 , -20 , -10 , 0 , 25 , 35 , 55 , 70  and 85℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃ ℃  respectively. The system 

for detecting structural health in the presence of variable temperature fatigue cracks 

comprises four main components: SHM system, an light microscope , an 

environmental box, and a fatigue cycling system. The SHM system is responsible for 

collecting signals. A moving optical microscope monitors the size of the fatigue crack 

as it grows,  as shown in Figure 5(b). The fatigue test is performed using an MTS 

Landmark hydraulic fatigue machine with a cycling frequency of 10 Hz, as depicted 

in Figure 5(c). The fatigue load is varied between 8Mpa and 80Mpa, and the loading 

frequency remains constant at 10 Hz. The loading spectrum for constant fatigue is 

presented in Figure 6. 
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T1 T2 T3 T4 T5

T6 T7 T8 T9

 
(a) nine specimens 

 
(b)The traveling optical microscope 

 
(c) MTS Landmark hydraulic fatigue machine 

and environment box 
Figure 5: The overall experimental setup. 

 

 

80Mpa

8Mpa

1 Spectrum

10 Cycles

 
Figure 6: Constant Fatigue loading spectra for specimens. 

 

Specimens T1–T9 are used for testing. Fatigue cracks are naturally generated during 

fatigue testing. Take the crack propagation length of 0.5mm as a measurement point 



12 

 

until the crack length is 5mm. Individual differences in PZT and control groups were 

considered, four groups of signals are measured under each crack length of each 

specimen, each PZT was used to excite and receive LW signals.  After the fatigue 

testing, the collected data were sorted. The signals collected in the healthy state of 

specimens are named ( ) ( )1 36m t m t  in the order of T1-T9. The signal collected when 

the crack is 0.5mm is named ( ) ( )37 54m t m t  in the order of T1-T9. Similarly, the 

signals collected with crack lengths of

1 ,  1.5 ,  2 ,  2.5 ,  3 ,  3.5 ,  4 ,  4.5   5mm mm mm mm mm mm mm mm and mm are named 

( ) ( )55 216m t m t  in the order of T1-T9. The above signals are used as training sets and 

the rest as test sets. 

 

4.2 Extraction of information entropy 

 
In the process of damage detection, it is necessary to continuously observe 

whether the Lamb signal changes to judge the damage state of the structure, which 

requires the extraction of damage indexes that can reflect the change in the Lamb 

wave signal. The Lamb wave signals of T2 specimen under different crack lengths is 

shown in Figure 7 (a). When the fatigue crack length is 1mm, the Lamb wave signals 

at different temperatures is shown in Figure 7(b). When the fatigue crack length is the 

same, the signals of different temperatures are very different. Therefore, time-varying 

temperature has a great influence on lamb signal. 

 

 
(a) Lamb wave signals at -20 ° C 

 
(b) Lamb wave signals with crack length of 

1mm 
Figure 7: Lamb wave signal. 

 

Traditional damage indexes such as phase shift and normalized amplitude need to 

select a fixed wave packet to extract the damage index. Due to the influence of time-

varying temperature, different wave packets are superimposed on each other. The 

direct wave packets are difficult to extract accurately. Therefore, the extracted phase 

shift and normalized amplitude can not accurately represent the actual damage. The 

energy singular spectral entropy and power singular spectral entropy proposed in this 

paper do not need to select wave packets, and directly calculate the amount of 

information contained in PS the complete signal. Combined with energy change and 
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singular value spectrum analysis, the damage indexes ES and PS including time-

varying temperature information and damage information are finally obtained, the 

results are shown in Figure 8(a)(b). To show the advantages of ES and PS, the 

traditional power information entropy and energy information entropy are also 

extracted, and the results are shown in the Figure 9(a)(b). According to the 

literature[30][31], the phase shift and normalized amplitude are also extracted, and the 

results are shown in Figure 10(a)(b). 
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Figure 8: ES and PS information entropy trend. 
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(a) Power information entropy 
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Figure 9: Traditional information entropy trend. 
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(b) Phase shift  

 
Figure 10: Traditional damage indexes trend. 

 
Under the condition of structural health, the damage indexes also changes when 

only the boundary conditions of the temperature change. It can be seen from Figure 

8, 9 and 10 that there is no obvious linear relationship between information entropy 

or damage index and crack length under time-varying temperature environment. 

Therefore, it is difficult to quantitatively detect fatigue cracks by using traditional 

regression method. Comparing the information entropy with and without cracks 

shows that the crack cannot be judged only from the change in the value of this 

parameter, so the damage state cannot be evaluated by the conventional threshold 

setting method. Therefore, in the next section, GMM and migration index KL are 

established based on information entropy and traditional damage index, respectively. 

In this way, the damage status is evaluated and the pros and cons of the three types of 

damage indicators are compared. 

 

4.3 Online Migration of the GMM 

 
During online monitoring, the monitoring sample set needs to be updated 

continuously, and the update method is first-in first-out. If the number of monitoring 

times n is 1, the newly acquired online feature sample 19S  is added to the end of 
0S , 

and the first sample 1S  in 
0S is discarded, so the monitoring sample set is 
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 1

2 3 19,S S S S= . The moving sample set is shown in Figure 9. In the experiment, 

the rES  and rPS  corresponding to each signal constitute the damage indexes sample 

K K KS ES PS＝［ ， ］, and the sample corresponding to the reference signal ( ) ( )1 18m t m t  

constitutes the reference feature sample set  0

1 2 18,S S S S= . The moving sample 

set is shown in Figure 11. 
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Figure 11: Schematic diagram of moving sample set. 

 

 

 

In this study, the number of components C in the GMM is 3. The distribution of 

the GMM is characterized by a contour map, and each contour ellipse represents a 

Gaussian component. The online GMM base ES and PS during monitoring is shown 

in Figure 12. The online GMM base energy information entropy and power 

information entropy during monitoring is shown in Figure 13. The online GMM base 

traditional damage indexes (phase shift and normalized amplitude) during monitoring 

is shown in Figure 14. Figure 12(a) show when the structure has no cracks. Under the 

influence of the change in boundary conditions, some characteristic samples are 

randomly shifted However, the GMM probability distribution in Figure 12 (b) is 

basically consistent with the baseline GMM in Figure 12 (a), and the GMM 

distribution form does not change due to random changes in signal characteristics. 

After crack generation and propagation, the Gaussian component distribution in the 

GMM changes cumulatively, such as shrinkage and migration. Under the influence of 

cracks in the structure, the probability distribution of the online monitoring feature 

sample set changes cumulatively compared with the probability distribution of the 

baseline feature sample set, as shown in Figure 12(c)(d)(e)(f). As can be seen from 

Figure 13 and Figure 14, the GMM is not clear enough, and the cumulative change of 

Gaussian component distribution is small with the increase of fatigue crack length.  
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(a) Baseline GMM  

(b) Online GMM, fatigue crack 
length 0 mm 

 
(c) Online GMM, fatigue crack 

length 1 mm 

 
(d) Online GMM, fatigue 

crack length 2.5 mm 

 
(e) Online GMM, fatigue crack 

length 4 mm 

 
(f) Online GMM, fatigue crack 

length 5 mm 

Figure 12 GMM migration mechanism base on PS and ES. 
 

 
(a) Baseline GMM 

 
(b)Online GMM, fatigue crack 

length 0 mm 

 
(c)Online GMM, fatigue crack 

length 1 mm 

 
(d) Online GMM, fatigue crack 

length 2.5 mm 

 
(e)Online GMM, fatigue crack 

length 4 mm 

 
(f)Online GMM, fatigue crack 

length 5 mm 

Figure 13: GMM migration mechanism base on traditional information entropy. 
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(a) Baseline GMM 

 
(b) Online GMM, fatigue crack 

length 0 mm 

 
(c) Online GMM, fatigue 

crack length 2 mm 

 
(d) Online GMM, fatigue crack 

length 3 mm 

 
(e) Online GMM, fatigue crack 

length 4 mm 

 
(f) Online GMM, fatigue 

crack length 5 mm 

Fihure14: GMM migration mechanism base on traditional damage indexes. 
 

 

4.4 Damage Monitoring Results and Analysis 

 
The calculation results of GMM migration index KL shown in Figure 15. GMM 

migration index KL based on information entropy in the first 36 damage detection 

processes, the value of KL is basically 0, indicating that there is no simulated damage 

at this time. Although the temperature conditions are changing all the time in this 

stage, environmental factors have no impact on the probability migration index 

studied. From the 37th time, there is a difference between the online GMM and the 

baseline GMM, indicating that damage has occurred in the structure at this time. After 

that, the KL value shows an obvious ladder. The larger the KL value is, the larger the 

fatigue crack length on the structure. In the whole detection process, although the 

temperature conditions of the aluminum plate have been changing, the numerical 

change in KL accurately and reliably reflects the change in the fatigue crack on the 

structure. Although the KL trend based on the GMM using traditional damage index 

is consistent with the information entropy KL trend, the change with the crack growth 

is not obvious enough to be used as the threshold for detecting the crack length. 

According to the GMM migration index KL based on information entropy, the 

damage identification threshold can be easily set to realize the damage detection under 

time-varying temperature. Therefore, the GMM based on information entropy can 

facilitate reliable and stable damage detection in a time-varying environment. 

Compared with the detection results based on the information entropy damage factors 
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given in Figure 7, the detection reliability of fatigue crack propagation is significantly 

improved under the influence of time-varying temperature.  
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Figure 15: KL trend chart. 

 

To further prove the reliability of this method, four groups of signals are 

randomly selected to construct the online migration index KL for verification. 

According to the method in Section 2.2, the PS and ES of the four groups of Lamb 

signals are extracted. The online migration index KL is established according to the 

methods in sections 3.2 and 3.3. The obtained test data is brought into the established 

online migration model for classification, and the classification matrix representing 

the classification accuracy is obtained as shown in Figure 16. 

 

 
(a)Confusion matrix based on 

ES and PS 

 
(b)Confusion matrix based on 

traditional information 
entropy 

 
(c)Confusion matrix based 

on traditional damage 
indexes 

Figure 16: Confusion matrix of test data. 

 

In this test, signals with fatigue crack lengths of 1 mm, 2 mm, 3 mm and 4 mm 

under time-varying temperature are used as the test data set. Due to the weaker KL 

ladder type of the traditional damage index and traditional information entropy, it is 

difficult to determine the degree of damage from the test data. As shown in Figure 15 

(a) confusion matrix based on information entropy, the classification accuracy of 

information entropy test data set is as high as 94.44%. As shown in Figure 15 (b) 

confusion matrix based on traditional information entropy, the classification accuracy 
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of the traditional damage index test data set is 83.33%. As shown in Figure 15 (c) 

confusion matrix based on traditional damage index, the classification accuracy of the 

traditional damage index test data set is 77.78%. Therefore, the on-line GMM base on 

ES and PS can effectively detect the fatigue crack length under time-varying 

temperature. 

 

5. Conclusion 

 
This paper proposed an online update damage detection method based on ES-

PS-GMM under variable temperature environment. In this method, two new 

information entropy ES and PS are proposed. Then two information entropy are used 

to establish baseline GMM and online GMM. When the fault occurs and continues to 

spread, the KL shows a cumulative progressive trend. To validate the proposed 

method's effectiveness, fatigue crack experiments under variable temperature 

environments are conducted, and the results show its effectiveness for quantifying 

fatigue crack damage. The following conclusions are drawn:  

The proposed GMM-based fatigue crack damage detection method using 

information entropy is effective for quantitatively detecting crack damage under time-

varying temperature environments. 

Two information entropy indexes (PS,ES) are extracted based on EEMD and 

SSA, which avoids the inaccurate problem of GMM established by traditional indexes 

under time-varying temperature. Compared with traditional information entropy 

(power entropy and energy entropy) and traditional damage index (normalized 

amplitude and correlation coefficient), the results show that ES and PS have higher 

robustness in time-varying temperature environment. It improves the stability of 

GMM method in detection structural damage of high-speed train under the 

environment of time-varying temperature. 
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