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Abstract 
 

This paper presents a computer vision-based AI system designed for detecting defects 

on the surface of carbon strips. Recognizing the limitations arising from inadequate 

representation of defective classes, we proposed a data augmentation approach that 

combines generative models and image processing, incorporating a semi-automated 

image selection process. Additionally, we have adopted a model ensemble technique 

to enhance identification accuracy. Through experimental validation, we 

demonstrated the effectiveness of our data augmentation methodology and model 

ensemble, resulting in an improved defect recall rate of 91.7%, false alarm recall rate 

of 93.9%, and accuracy of 92.9%. 
 

Keywords: anomaly detection, pantograph-catenary system, generative model, image 

processing, model ensemble, computer vision. 
 

1  Introduction 
 

The pantograph-catenary system is one of the most important components of the 

electrical locomotive, which is the only way to effectively provide power to the 

electrical locomotive [1]. Failure to detect such anomalies can result in damage to the 

overhead line system and severe service disruptions on railway lines. To pre-empt 

such incidents, it is imperative to develop and apply an AI-based model for the 

detection of carbon strip anomalies. 
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However, the current monitoring systems are incompetent to be effectively and 

promptly utilized in practical applications. The decision tree utilized in this paper [2] 

relies on periodic inspection of textual records, which introduces delays and fails to 

provide timely alarms in the event of an accident. The paper [3] proposed a visual 

model based on an improved Faster R-CNN algorithm, although it focuses on the 

approximate localization of carbon strips rather than precise detection of defects. The 

paper [4] utilizes a laboratory-based scene setup to detect artificial defects, which 

limits its ability to account for false alarms caused by environmental factors such as 

rainwater, dirt, oil/grease, and positional variations of moving trains. These false 

alarms can affect the accuracy of the system, impairing its ability to optimize 

maintenance efficiency and the maintenance cost of the railway system. 
 

In recent years, the emergence of deep learning technology has witnessed 

significant advancements in the field of surface anomaly detection. This paper aims 

to apply state-of-the-art deep learning techniques to enhance the reliability and safety 

of the intelligent transportation system. The contributions encompass: 

 

1. Utilize generative models to enhance the insufficient representation of 

defect classes (e.g. chip, crack) on the carbon strips of pantograph. 

2. Apply image processing techniques to simulate the lighting conditions 

typically encountered in railway tunnels. 

3. Employ ensembled AI models to improve the defect identification 

performance. 
 

2  Methods 
 

The dataset contains 266 carbon strip images obtained from three distinct periods. 

Within this dataset, there are 173 false alarm images and 93 defective images. Our 

dataset primarily focuses on defective classes, specifically 'chip' and 'crack', rather 

than including a large number of normal images. Figure-1 provides an illustration 

showcasing these classes. All the images have a dimension of 2800 in width and 600 

in height, with a single channel. 

 

 
 

Figure 1: Illustration of defective classes. (Left: vertical crack; right: edge chip.) 
 

2.1 Data Augmentation 
 

 Given the limited representation of defect classes and extremely large image size, 

we employ styleGAN-XL [5] as the generative models to synthesize defect images. 

To effectively harness the potential of the generative model for data enhancement, a 
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two-step semi-automatic selection approach was employed. Firstly, the VGG16 

network [6] was utilized to automatically filter out images based on their Euclidean 

distance with the following steps: (1) The last average pooling layer of VGG16 served 

as the embedding layer; (2) The centroid embedding of real images was computed; 

(3) Generated images were selected based on their Euclidean distance from the 

centroid with a threshold. Subsequently, images exhibiting clear defects without any 

blurring were manually chosen for annotation. The workflow of automatic selection 

is shown in Figure-2. 

 

 
 

Figure 2: Automatic selection flow for generative images. 
 

 Adjusting the brightness, contrast, and hue of an image is a widely adopted image 

augmentation technique in image processing. In the case of simulating complex 

lighting conditions found in real railway tunnels, we introduce the concept of adding 

bright spots to the image [7]. We consider two types of light sources: spot-light and 

parallel light, and accordingly, we have two workflows: (1) Spot-light flow: randomly 

generate a value mask using Gaussian blur and apply it to the HSV image on the value 

channel. (2) Parallel-light flow: employ a line static mode with a random decay rate, 

initial position, and rotation, and then incorporate the value mask onto the HSV image 

on the value channel. 
 

2.3 Model Ensemble 
 

 We use YOLOv8 model family as the base model for model ensemble [8]. 

YOLOv8 is the newest state-of-the-art YOLO model that can be used for object 

detection, image classification, and instance segmentation tasks [9]. We employ a 

lightweight model as the primary model, complemented by a more powerful and 

larger model as a supplementary component. The architecture of the ensembled model 

is shown in Figure-3. We feed the datasets into two models simultaneously and use 

two tuners to tune the confidential threshold for defect classes. This method will 
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produce a lot of redundant results. We use the following three methods to improve it: 

(1) Perform an image-level AND operation to remove false alarms; (2) Perform a non-

maximum suppression to remove the duplicated bounding boxes after merge two 

model’s result; and (3) Combine segmentation prototype from supplementary model 

to get the final foreground segmentation. 

 

 
 

Figure 3: Architecture of the ensembled model. 

 

3  Results 
 

3.1 Image Generation 
 

Initially, we generated 300 synthetic images using StyleGAN-XL. Then, the 

automatic selection network filtered out 216 images with Euclidean distance larger 

than 54. Finally, we manually selected 28 synthetic images with 19 chip instances and 

10 crack instances for data augmentation. The synthetic results can be seen in Figure-

4. 

 

 
 

 
 

 
 

Figure 4: Results of synthetic images (Upper two: selected images; middle: images 

with large Euclidean distance; lower left: image without clear surface defect; lower 

right: blur image.) 
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 We utilize OpenCV to facilitate lighting adjustment. Three distinct methods were 

employed: (1) Spot-light with large size, (2) Spot-light with small size, and (3) Parallel 

light. Figure-5 showcases samples of the synthesized images resulting from these 

methods. 

 

 
 

 
 

Figure 5: Results of lighting-adjusted images. (Upper left: source image; upper right: 

spot-light with large size; lower left: spot-light with small size; lower right: parallel 

light.) 
 

3.2 Result of Data Augmentation Method 
 

For defect identification, our dataset comprises 266 real images and an additional 28 

synthetic images. To leverage the advantage of pre-trained models, all the images are 

stretched into 640 × 640. The training set undergoes data augmentation, including 

horizontal and vertical flips, rotation (±10°), and lighting adjustment as an extra 

augmentation method. After these operations, the training set consists of 1544 images, 

while the testing set contains 85 images. 
 

 Given the practical scenario, visual inspections are conducted by workers on 

images containing defects, regardless of the specific type or number of defects. To 

evaluate the performance, we employ both instance-level and image-level Defect 

Recall Rate (TPR) and False Alarm Recall Rate (TNR) as the metrics, which measure 

the accuracy and completeness of anomaly detection. Additionally, we utilize 

Accuracy (ACC) as a metric to assess the correspondence between positive decisions 

and the actual presence of defects. 
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (1) 

𝑇𝑁𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (2) 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (3) 

 

 Where 𝑇𝑃 refers to true positives, 𝑇𝑁 refers to true negatives, 𝐹𝑃 refers to false 

positives, and 𝐹𝑁 refers to false negatives. 
 
 

 All the experiments were conducted on a Nvidia A-100 supercomputer, utilizing 

100 epochs, a batch size of 16, and the SGD optimizer. The initial learning rate was 

set to 0.01, with a momentum of 0.937 and weight decay of 0.0005. The Mosaic 

technique was enabled [10], and we close the Mosaic in the last 10 epochs to improve 
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the model training [11]. The anomaly detection results are presented in Table-1 and 

Table-2. 

 

Model 
Results without Augmentation Results with Augmentation 

mAP50: bbox mAP50: mask mAP50: bbox mAP50: mask 

YOLOv8-n 0.726 0.664 0.756 0.711 

YOLOv8-s 0.734 0.694 0.759 0.710 

YOLOv8-m 0.752 0.684 0.766 0.766 

YOLOv8-l 0.716 0.656 0.796 0.711 

YOLOv8-x 0.721 0.655 0.746 0.709 

 

Table 1: Instance-level comparison of data augmentation on a single model. 

 

Model 
Results without Augmentation Results with Augmentation 

TPR TNR ACC TPR TNR ACC 

YOLOv8-n 0.833 0.848 0.842 0.861 0.891 0.878 (+0.036) 

YOLOv8-s 0.972 0.783 0.863 0.944 0.816 0.870 (+0.007) 

YOLOv8-m 0.861 0.935 0.904 0.916 0.918 0.917 (+0.013) 

YOLOv8-l 0.861 0.870 0.866 0.889 0.891 0.890 (+0.024) 

YOLOv8-x 0.833 0.878 0.859 0.944 0.837 0.882 (+0.023) 

 

Table 2: Image-level comparison of data augmentation on a single model. 
 

 Table-1 showcases an enhancement in instance-level performance, as indicated by 

the mAP50-bbox and mAP50-mask metrics. On the other hand, Table-2 displays a 

significant increase in the accuracy (ACC) of all YOLOv8 variants, attributed to the 

utilization of data augmentation techniques. Although certain YOLOv8 variants may 

display slight drops in performance, the majority of the variants exhibit improvements 

in TPR or TNR metrics. 
 

3.3 Results of Model Ensemble Techniques 
 

 To harness the strengths of various model variants, we thoroughly evaluated all 10 

possible combinations on both augmented and non-augmented datasets. The 

experimental results, presented in Table-3, provide a comprehensive analysis of the 

performance achieved by each combination. 

 

Model 1 Model 2 
Results Increment 

TPR TNR ACC TPR TNR ACC 

YOLOv8-n -- 0.861 0.891 0.878 -- -- -- 

YOLOv8-n YOLOv8-s 0.944 0.878 0.906 +0.083 -0.013 +0.028 

YOLOv8-n YOLOv8-m 0.944 0.898 0.918 +0.083 +0.007 +0.040 

YOLOv8-n YOLOv8-l 0.944 0.898 0.918 +0.083 +0.017 +0.040 

YOLOv8-n YOLOv8-x 0.972 0.837 0.894 +0.111 -0.053 +0.016 

YOLOv8-s -- 0.944 0.816 0.870 -- -- -- 
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YOLOv8-s YOLOv8-m 0.944 0.898 0.918 0 +0.082 +0.048 

YOLOv8-s YOLOv8-l 0.917 0.939 0.929 -0.027 +0.123 +0.059 

YOLOv8-s YOLOv8-x 0.944 0.898 0.918 0 +0.082 +0.048 

YOLOv8-m -- 0.916 0.918 0.917 -- -- -- 

YOLOv8-m YOLOv8-l 0.889 0.960 0.929 -0.027 +0.042 +0.012 

YOLOv8-m YOLOv8-x 0.917 0.918 0.918 +0.001 0 +0.001 

YOLOv8-l -- 0.889 0.891 0.890 -- -- -- 

YOLOv8-l YOLOv8-x 0.972 0.857 0.906 +0.083 -0.034 +0.016 

 

Table 3: Model ensemble experiment results. 
 

 It is evident that all the individual models experience improvements in ACC as a 

result of model ensemble, and most of ensemble model have improvement in false 

alarm recall rate and defect recall rate. To strike a balance between computational cost 

and model performance, we carefully select the combination of YOLOv8-n and 

YOLOv8-m, achieving an impressive 91.8% ACC, along with 94.4% TPR and 89.8% 

TNR. 

 

4  Conclusions & Contributions 
 

This paper presents a computer vision-based system for detecting surface defects on 

carbon strips. Considering the limited dataset, an innovative data augmentation 

approach is introduced, comprising two key aspects: (1) Utilizing generative models 

for synthesizing images with semi-automatic selection, and (2) Simulating spot-light 

and parallel light through lighting adjustment. Additionally, model ensemble is 

employed to enhance identification accuracy. Experimental results demonstrate the 

effectiveness of these methods, showcasing a maximum 3.6% improvement in ACC 

resulting from data augmentation and maximum 5.9% increment in ACC from model 

ensemble, respectively. 
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