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Abstract 
 

Traditional contact force measurement methods are expensive and impractical for 

regular train operation. This study proposes estimating pantograph-catenary contact 

force using linear camera images of collector head vertical movement and artificial 

intelligence tools such as artificial neural networks. The whole procedure is based on 

experimental measurements performed on a pantograph test bench. From the linear 

camera images taken of the contact strip, two methods were proposed to obtain the 

collector head acceleration. Then, in the second step, the contact force is estimated. 

The results obtained show an overall excellent accuracy when compared to the 

measured magnitudes on the test bench with a root mean square error of 4.8 N. To 

obtain this accurate contact force prediction is preferable to take longer acceleration 

intervals before the prediction time step.  
 

 

Keywords: catenary, pantograph, artificial neural networks, condition monitoring, 

linear camera, contact force. 

 

 
 

1  Introduction 
 

Failures in the energy supply system of electric trains can cause delays in circulation 

or even endanger the safety of passengers. Therefore, it would be advisable to 

continuously monitor the catenary to enable proper maintenance operation planning 

and increase system reliability.  
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Regarding catenary monitoring, in recent years, the number of publications has 

significantly increased [1], focusing on various aspects such as detecting the contact 

point, wear of the contact wire, arcing, or the contact force between the pantograph 

and the catenary, which is the focus of this study. Typically, the standardized method 

for measuring the contact force [2] requires an instrumented pantograph mounted on 

a dedicated vehicle. The measurement procedure is relatively costly and is not suitable 

for its use on a regularly operated train. As an alternative, estimating the contact force 

from indirect measurements on the pantograph is proposed. For example, in [3], the 

strain of the contact strips is used to obtain the contact force, or in [4], this force is 

derived from acceleration measurements of the collector head.  

 

In this work, we propose estimating the pantograph-catenary contact force between 

the pantograph and the catenary using linear camera images of the vertical movement 

of the collector head and artificial neural networks (ANN). For the development and 

validation of the proposed methodology, measurements obtained from a pantograph 

test bench have been utilized. 

 

The proposed approach is presented in Section 2 while the main results obtained 

are discussed in Section 3. Section 4 ends this work with some conclusions.  
 

2  Methods 
 

The methodology proposed to estimate the contact force applied on the pantograph 

from the images of the pantograph head is summarised in Figure 1. First, from the 

power spectral density (PSD) of the contact wire height error, a set of 10 catenary 

models is built and simulated with the software PACDIN [5], giving as a result the 

contact wire vertical displacement. This displacement is sent to the linear motor in the 

test bench, which imposes it on the pantograph contact strips. On each test, the contact 

force on the pantograph head is measured with two load cells, and a linear camera 

provides a grayscale image of a light source installed on the contact strip.   

 

A first artificial neural network is trained taking as input the linear camera image 

at a given time step and predicting the vertical displacement of the pantograph 

collector head. This predicted displacement is low-pass filtered to 20 Hz, and the 

acceleration is computed with a central finite differences scheme. Then, following a 

similar procedure as that proposed in [6], a second ANN is trained from the 

acceleration signal in a short period to predict de contact force. The details of each 

step are presented in the following subsections. 
 

2.1 Initial data 
 

The data set used in this work is composed of 10 catenary models that include two 

overlap sections each. As described in [6], the PSD of the contact wire height error is 

obtained from measurements of installed catenary sections. By setting a random 

phase, 10 sets of contact wire height errors were obtained. These were set as input of 

the PACDIN software which first, computes the shape-finding problem to obtain an 

FE model of the catenary that fulfils these contact wire height specifications at the 
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dropper connection points. Then, the pantograph-catenary dynamic interaction 

simulation is performed [7] with a lumped-mass pantograph model and a penalty 

approach to model the contact between the pantograph and the contact wire. The 

simulations are run considering random train speeds from 250 to 300 km/h. As a 

result, we have the vertical displacement of the contact point for the 10 simulations. 

Note that each initial sample has a different size since the length of the catenary 

section simulated is the same, but the train speed differs from one simulation to the 

other. 
 

 
 

Figure 1: Flow diagram of the method proposed to estimate the contact force 

from linear camera images. 
 

2.2 Experimental tests 
 

The vertical contact wire displacement, 𝑢𝑐𝑤, obtained from simulation, is imposed to 

be followed by the linear motor on the test bench, which in turn, moves vertically the 

pantograph head as shown in Figure 2.  
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Figure 2: Test bench with its main components [8]. 
 

At each test, four signals are measured synchronously at a rate of 500 Hz. With 

two load cells, the force applied at each contact strip is collected, being the total force 

the sum of these two signals. The vertical acceleration of each contact strip is also 

measured. In this case, the vertical acceleration of the pantograph head is the mean 

value of these two accelerations. The linear motor driver also provides the 

displacement of the motor, which in fact, is the vertical displacement of the 

pantograph head. Additionally, the linear camera Aviiva from Teledynedalsa 

(Waterloo, ON, Canada), with a resolution of 8192 pixels, is installed. The camera is 

framed to an LED light source, placed on the lateral side of one contact strip, which 

is used as a marker that facilitates image processing. Figure 3 shows an example of 

the image obtained from a given test, which was trimmed to 3100 pixels.    
 

 
 

Figure 3: Image captured by the linear camera on a given test. 
 

2.3 Prediction of acceleration from linear images 
 

The next step is to predict the pantograph head acceleration from the images captured 

by the linear camera as shown in Figure 3. To this end, we propose two strategies: i) 
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the use of an artificial neural network, and ii) selecting the midpoint of the saturated 

region of the image.  

 

The ANN proposed, takes as input the vector containing the grayscale values of 

the image at a given time step and returns the pantograph head displacement at this 

time step. The grayscale value is first scaled to range from 0 to 1 and at each time step 

it is a vector of 3100 pixels in length. The hyperparameters defining the ANN are 

selected heuristically to provide accurate results. Specifically, we end up with a 

regression neural network containing two layers of 500 and 250 neurons each and 

ReLU activation functions. 8 samples are used to train the ANN while the other 2 are 

left for validation purposes.  

 

The second strategy consists of detecting the pixels in which clipping occurs (the 

scaled grayscale value is 1) and selecting the intermediate pixel of this region for every 

time step. This procedure is exemplified in Figure 4 for a given time step, in which 

the shaded grey is the clipped region, and the red marker is the final selected pixel. 

Finally, the result of this procedure is converted to length units scaling by a calibrating 

factor of millimetres per pixel.  
 

 
 

Figure 4: Scaled grayscale values for a given time step. Pixel selection at the 

middle of the clipped region. 
 

Once the displacement of the pantograph head is known by one of the two methods 

proposed, it is low-pass filtered to 20 Hz and derived twice over time by using a 

central differences scheme.  
 

2.4 Prediction of contact force from acceleration 
 

Another ANN carries out this last step. In this case, it takes as input a given prediction 

interval of the acceleration computed in previous stages of the proposed procedure 

and returns the contact force (the force applied to the pantograph) of a single time 

step. Figure 5 shows the described input for the time 4.6 s. The prediction interval 

[𝑡 − 𝑁𝑡
𝑎𝑛𝑡 , 𝑡 + 𝑁𝑡

𝑝𝑜𝑠], can be adjusted to improve the prediction accuracy as discussed 

in Section 3.2. 

 

The layout of this ANN is the same as that of the ANN used to predict displacement 

from the linear camera image. Also, 8 acceleration samples are used to train the 

network and the other 2 are used to validate its predictions. It is important to remark 

that this method is not able to predict the mean value of the contact force. However, 
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this is not a big limitation since the mean value does not affect the standard deviation 

which is used as a parameter to quantify the current collection quality and it is 

eventually the final goal of the proposed method. 
 

 
 

Figure 5: Example of the input of the ANN (red curve) to predict the contact 

force at the time step highlighted with a cross marker. 
 

3  Results 
 

The results shown in the subsequent sections are aimed at assessing the accuracy of 

the two prediction stages of the proposed method to estimate the contact force from 

linear camera images of the contact strip. First, the prediction of the vertical 

acceleration from the image is assessed and then the prediction of the contact force 

from the acceleration. For this, we use the two samples not involved into the training 

process.  
 

3.1 Assessment of the predicted acceleration 
 

First, the accuracy of the two methods proposed to obtain the pantograph head vertical 

displacement from the linear camera images is observed in Figure 6. Both strategies 

provide very good results when compared with the measured displacement provided 

by the motor controller. However, from a closer view of Figure 6, the prediction made 

by the ANN fits better the measured displacement, maybe due to the middle-pixel 

approach if affected by the distortion of the image when the LED light moves away 

from the central position. 
 

 
 

Figure 6: Comparison of the obtained displacement from both the ANN and the 

middle-pixel methods with the measured displacement. 
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Then, this displacement is low-pass filtered and derived twice with respect to time 

to obtain the vertical acceleration of the pantograph head. Figure 7 shows a 

comparison of the obtained acceleration from both displacement prediction methods 

with the measured acceleration in the test bench. Again, the two methods lead to very 

good acceleration prediction, being the ANN-based a bit more accurate. 
 

 
 

Figure 7: Comparison of the obtained acceleration from both the ANN and the 

middle-pixel methods with the measured acceleration. 
 

To quantify the accuracy of both methods in obtaining displacement and 

acceleration from the linear camera image, we use the relative root mean square error 

(RRMSE). For a given magnitude 𝑦 with 𝑁 time steps, it is defined as: 
 

𝐸 =
1

𝑁|𝑦|𝑚𝑎𝑥
√∑ |𝑦𝑡

∗ − 𝑦𝑡|2
𝑡=𝑁
𝑡=1                                             (1) 

 

being 𝑦𝑡 the measured magnitude at time step 𝑡, |𝑦|𝑚𝑎𝑥 its maximum absolute value, 

and 𝑦𝑡
∗ the predicted value at time step 𝑡. In Table 1, the RRMSE for displacement 

and acceleration prediction from the two methods proposed is provided. The ANN 

prediction is more accurate mainly for the displacement prediction. After filtering and 

derivation, both method produces a similarly accurate acceleration prediction.   
   

 Displacement 

[-] 

Acceleration 

[-] 

ANN prediction 0.055 1.03·10-2 

Middle-pixel prediction 0.173 1.26·10-2 
 

Table 1: RRMSE of the displacement and acceleration prediction from a linear 

camera image. 
 

3.2. Assessment of the predicted contact force 
 

The strategy described in Section 2.4 is validated in this section. Table 2 shows the 

RMSE (note that it is an absolute error measured in N) of the predicted contact force 
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for different combinations of 𝑁𝑡
𝑎𝑛𝑡 and 𝑁𝑡

𝑝𝑜𝑠
, i.e. for different length of the input 

acceleration signal in the ANN. 
 

 𝑁𝑡
𝑝𝑜𝑠

 

𝑁𝑡
𝑎𝑛𝑡 50 100 200 

50 8.86 8.06 7.09 

100 7.53 6.33 6.48 

200 5.93 5.36 5.22 

300 4.80 4.77 4.91 
 

Table 2: RMSE [N] of the predicted contact force. 
 

These results show that for a more accurate prediction is more important to 

consider acceleration values measured before the prediction time step than the 

acceleration after this point, whose amount barely affects the prediction accuracy. In 

fact, for a large enough acceleration time interval before the prediction time step ( 

𝑁𝑡
𝑎𝑛𝑡 = 300), it is not necessary to include subsequent acceleration values. 

 

Figure 8 shows a comparison between the predicted and measured contact force 

for one of the two validation samples, taking the two acceleration prediction intervals 

shaded in green in Table 2. It can be noticed that with 𝑁𝑡
𝑎𝑛𝑡 = 300 the predicted force, 

in general, is more similar to the measured force. However, the other example shown 

(𝑁𝑡
𝑎𝑛𝑡 = 50,𝑁𝑡

𝑝𝑜𝑠
= 200) also exhibits a good similarity to the measured magnitude. 

 

 
 

Figure 8: Comparison of the predicted acceleration from two different prediction 

intervals. 
 

4  Conclusions and contributions 
 

This paper proposes a method to estimate de pantograph-catenary contact force from 

images that capture the movement of a contact strip. For this, the first step consists of 

predicting the vertical collector head acceleration from linear camera images, in which 

the proposed ANN-based approach generally shows superior performance compared 

to the middle-pixel method. This suggests that the ANN approach is more robust and 

less susceptible to image distortion effects. The second step of the method proposed 

consists of predicting the contact force from the acceleration of the collector head. 

The results emphasize the significance of considering acceleration values measured 

before the prediction time step as input of the ANN for accurate contact force 

prediction. Despite variations in the length of input acceleration signal intervals, the 



 

9 

 

ANN predictions remain robust, yielding satisfactory similarity to measured contact 

forces. This suggests that the proposed methodology is versatile and capable of 

producing reliable predictions across different scenarios. 

 

Estimating pantograph-catenary contact force using images of vertical collector 

head movement and ANN shows promise as a viable method for continuous 

monitoring and maintenance planning in electric train systems. The methodology 

developed and validated in this study demonstrates the potential for enhancing system 

reliability and safety while reducing costs associated with traditional contact force 

measurement methods. 
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