
1 

 

 
 

 

 

Abstract 
 

This study proposes a sequential infill criterion (SIC) appropriate for the Kriging 

surrogate to address this issue. Multi-objective functions are employed to test the 

feasibility of constructing a surrogate model based on SIC, and the SIC surrogate 

model then performs multi-objective aerodynamic optimizations on the high-speed 

train. The findings indicate that the improvement infill criterion (EIC) that fuses the 

gradient information (PGEIC) surrogate model achieves the lowest generational 

distance (GD) and prediction error. The performance of EIC for global search, EIC 

for Pareto front search (PEIC), and infill criterion for Pareto front search using only 

gradient information (PGIC) is poor. The final PGEIC-SIC surrogate model of train 

aerodynamics has less than 1% prediction error for the three optimization objectives. 

The optimal solution reduces the aerodynamic drag force of the head car and the 

aerodynamic drag and lift force of the tail car by 4.15%, 3.21%, and 3.56%, 

respectively, compared with the original model. Furthermore, the nose and cab 

window heights of the optimal model have been reduced, and the lower contour line 

is concave. Correspondingly, the streamlined shape appears more rounded and 

slender. 
 

Keywords: surrogate model, sequential infill criterion, gradient information, high-

speed train, aerodynamic multi-optimization, shape optimization. 
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1  Introduction 
 

Aerodynamic multi-objective optimization of high-speed trains is important for 

improving train operation safety and riding comfort. However, the geometric model 

of the high-speed train has a large scale and complex structure. The computing cost 

of numerical simulation is huge, lengthening the multi-objective optimization cycle 

and making it harder to find the global optimal solution. As a result, optimization 

using surrogate models emerged as a critical component for accelerating the 

optimization design and enhancing optimization efficiency. The prediction accuracy 

of the surrogate model seriously affects the optimization results when aerodynamic 

design is performed. Appropriate sample infill criteria can improve the model 

accuracy and facilitate the convergence of multi-objective optimization [1]. The 

traditional surrogate model method without infill criteria has been widely used in 

high-speed train aerodynamic optimization [2-5]. The progress of numerical 

technology has concurrently fostered an inclination towards addressing multiple 

variables and objectives, leading to a notable escalation in the requisite number of 

samples essential for the establishment of high-precision surrogate models. Zhang et 

al. [6] proposed a method of infilling special samples in the Pareto front, selecting the 

optimal point of every objective for verification. If the error criterion is not met, it will 

be added to the training set to refine the model. Xu et al. [7] established a cross-

validation (CV) Kriging surrogate model. Should the prediction error of the validation 

sample fail to meet the predetermined criteria, it is incorporated into the training set. 

Subsequently, a succeeding-generation model is formulated to continue the 

optimization process. Yao et al. [8] and other researchers [9] constructed standard 

Kriging or CV-Kriging models and defined error standards. The Pareto front was then 

obtained using optimization algorithms, and validation samples were selected. 

However, the papers don’t contain details on how to select samples from the optimized 

solution set for verification. The approach of selecting points in the Pareto front is 

widely used and has successful outcomes. It can make the model converge to the 

optimal solution faster and improve the optimization efficiency [9-11]. In this study, 

the sequential infill criteria (SIC) is introduced, a novel approach that amalgamates 

the gradient information derived from the surrogate model with the expected 

improvement infill criterion (EIC). During the initial stage of the SIC, the EIC is 

employed to enhance the global accuracy of the surrogate model. Then, the modeling 

process transitions to the second stage upon convergence of prediction accuracy. 

Subsequently, infill criteria grounded in the Pareto front are applied to enhance 

prediction accuracy near the optimal solution until the predetermined standard is met, 

thereby identifying the optimal solution. The application of the SIC serves to enhance 

the accuracy of the surrogate model with minimal sample utilization, consequently 

elevating the efficiency of aerodynamic multi-objective optimization. This 

methodology is indispensable for addressing multi-objective optimization problems 

characterized by extensive numerical computations. 
 

2  Methods 
 

2.1 Sequential infill criterion (SIC) 



3 

 

The construction process of the SIC surrogate model, as illustrated in Figure 1, unfolds 

as follows: 

 

Figure 1: Construction process of the SIC surrogate model. 
 

 
 

 

Step 1: The initial sample set is derived through the optimal Latin hypercube 

sampling (OLHS) method. Meanwhile, the sample expansion strategy in the literature 

[12] is used to obtain the training and validation sets, facilitating the construction of 

the initial surrogate model.  

Step 2: The validation set is employed to assess the prediction accuracy of the 

surrogate model. The average prediction error of the validation set serves as the 

evaluation index for this purpose. If the prediction error fulfills the predefined 

requirements, the global accuracy is regarded to meet the requirements, and the second 

stage is entered.  

Step 3: If the prediction error does not reach the predefined requirements, the 

sample infill criterion I EIC is adopted to determine the samples to be added. Add the 

sample to the training set, carry out training of the next-generation surrogate model, 

and return to Step 2. 

Step 4: During the second stage of the SIC, the NSGA-II is utilized for calculating 

the Pareto front, and sample infill criterion II is employed to explore the Pareto front, 

determining the samples to be added. 

Step 5: The chosen samples are employed to validate the prediction accuracy of the 

surrogate model. Should the prediction error meet the predefined requirements, it is 

concluded that the surrogate model and the multi-objective optimization are 

sufficiently accurate, leading to the termination of the optimization procedure. 

Step 6: If the prediction error does not satisfy the predefined criteria, the selected 

sample from the Pareto front is added to the training set. Then, the training of the next-

generation surrogate model is carried out and returned to Step 4. 

In Step 1, the sample expansion strategy identifies samples from the initial sample 

set using the maximum and minimum distance criterion combined with the 

optimization technique. The obtained validation set contains no samples that overlap 

with the training set. Furthermore, it can ensure the maximum sample filling degree, 

enabling the validation set to test the surrogate model's global error. 
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The convergence criterion 2

thr
S  is the variance of the prediction error of the last 

three generations of the validation set. When 2

thr
S <0.01, the global accuracy is 

regarded to have converged and moves to the second stage of SIC. 
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where n is the generation number, ei is the prediction error of the ith generation 

surrogate model on the validation set. e  is the average prediction error of the last 

three generations of the validation set. 

In the second stage of SIC, the construction efficiencies of surrogate models for 

four infill criteria are compared: the EIC for global search, the EIC for Pareto front 

search (PEIC), the infill criterion for Pareto front search using only gradient 

information (PGIC), and an infill criterion based on EIC that fuses gradient 

information (PGEIC). Particularly, the PGEIC finds the sample with the largest 

gradient g in the Pareto front and adds it to the training set to generate the next-

generation surrogate model. PGEIC integrates the EIC and the gradient information 

of the sample, as illustrated in Equation (3). The sample characterized by the 

maximum Ig is incorporated into the training set to generate the next-generation 

surrogate model. 
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where n is the objective dimension, k is the variable dimension 
 

2.2 Setting of numerical simulations 

Figure 2 shows the numerical simulation domain, with the height and width of 14H 

and 28H, respectively. The x distances between the nose tip and the boundaries of the 

domain are 14H and 28H, respectively, which satisfy the standards of Requirements 

and test procedures for aerodynamics on open track (EN 14067-4). The rail and 

subgrade are built to simulate the real ground configuration. The origin of the 

coordinates is situated at the bottom of the middle car, aligned with the longitudinal 

center section of the car body. Set up a refinement box to refine the grid surrounding 

the train to solve the flow field more accurately. 

 

Figure 2: Computational domain. 
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The velocity-inlet boundary is specified, with velocity u = (97.22, 0, 0) m/s. The 

airflow of the surroundings becomes a compressible, viscous, unsteady turbulent flow 

during high-speed train operation. In the present work, the flow is computed using the 

Reynolds average method, along with the k-ω SST (shear stress transport) two-

equation turbulence model [13-14]. This is done to reduce the computational cost of 

the optimization process. Outlet boundary is designated as the pressure-outlet, with 

the pressure set to 0. The top and sides of the computational domain are configured as 

symmetry.  
 

2.3 Parametric design of train nose shape 

A full-scale three-car marshaling model, comprising the head, middle, and tail cars, is 

employed for the multi-objective optimization of the high-speed train, as depicted in 

Figure 3. The objectives in the multi-objective aerodynamic optimization of high-

speed trains include the aerodynamic lift force of the tail car (LT), the aerodynamic 

drag force of the tail car (DT), and the aerodynamic drag force of the head car (DH). 

The DH, DT, and LT of the original model are 6.98 kN, 4.68 kN, and 3.65 kN, 

respectively. 

Five features are selected to parameterize the high-speed train, namely control line 

of nose height C1, gear height C2, cab window height C3, middle contour line C4, and 

lower contour line C5, corresponding to design variables v1、v2、v3、v4 and v5. v1 

represents the deformation ratio of the original curve, v2、v3、v4, and v5 represents 

the maximum distance of the curve deformation (mm). Figure 3 depicts the design 

variables and change intervals. The curves are all B-spline curves derived from 

numerous design points, and the surfaces are B-spline surfaces formed from spline 

curves. 

 

Figure 3: Design variables and variation intervals. 
 

3  Results and discuss 
 

3.1 ZDT1 Test functions 

The surrogate model construction efficiency of the four criteria is compared using the 

multi-objective test functions Zitzler-Deb-Thiele 1 (ZDT1). This comparison aims to 

establish the universal applicability of the PGEIC-SIC surrogate model.  

The f1 and f2 of the ZDT1 [15] are: 
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The initial training sets for ZDT1 consist of 15 and 30 samples, respectively. The 

convergence requirements of the SIC first stage are satisfied after adding 11 and 18 

samples, respectively, using EIC, and progress to the second stage of SIC. Figure 4 

depicts the GD obtained in the SIC second step using various sample infill criteria. 

The GD obtained from the PGEIC surrogate model has the smallest value for two 

functions, indicating that the error between it and the real Pareto front is the smallest, 

followed by the PEIC. The EIC method yields the highest GD among the four methods. 

This is primarily due to the high variable dimension of the ZDT1 function, which 

makes it difficult to get close to the optimal solution when performing a global search. 

Therefore, the created surrogate model has a larger prediction error near the real 

Pareto front or even far away from it. The analysis of the second stage infill criteria 

of SIC reveals that PGEIC has the greatest efficiency in constructing a surrogate 

model, whereas EIC and PGIC have lower efficiencies. Consequently, PGEIC will be 

used to create the surrogate model, the PGEIC-SIC surrogate model, on which the 

aerodynamic multi-objective optimization research on high-speed trains will be 

conducted. 
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Figure 4: GD coverage history of four surrogate models in the SIC second stage. 

 

3.2. Construction of SIC surrogate model and multi-optimization 

The OLHS method is employed to generate 40 samples and establish an initial sample 

set. Ten samples are acquired through the sample expansion strategy, constituting a 

validation set, and the remaining 30 samples are designated as the training set. The 

first-generation surrogate model is constructed using the initial training set, with 

average prediction errors of 2.8%, 1.2%, and 3.5% for DH, DT, and LT, respectively. 

The first stage of the SIC surrogate model is executed following the procedural steps 

delineated in Figure 1. After adding the first sample, the errors of the new generation 

model for the three objectives of the validation set are 2.4%, 1.1%, and 3.2%, 

respectively. The global prediction error convergence process is depicted in Figure 
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5(a). The relative error is adopted as the error evaluation criterion, and the variance of 

the data is small. Therefore, the predetermined criterion is reduced to 10-6. The values 

of the three objective functions are 8.4×10-8, 2.4×10-8, and 3.7×10-8 when 10 samples 

are infilled and the first stage finishes. 
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(a) Globel prediction error       (b) Prediction error for validation samples 

Figure 5: Prediction error of the PGEIC-SIC surrogate model. 
 

The aerodynamic multi-objective optimizations of high-speed trains are an actual 

engineering problem, which differs from the optimization of multi-objective test 

functions. It is impossible to determine the convergence of optimization using GD 

because there is no recognized Pareto front. The ultimate goal of multi-optimization 

for actual engineering issues is to obtain an optimized solution with better 

performance. Therefore, the prediction error of the sample in the Pareto front is chosen 

as the criterion for determining if optimization is finished. The termination criterion 

for multi-objective optimization in this study is that DH, DT, and LT prediction errors 

are below 1% simultaneously. The NSGA-II algorithm is engaged to figure out the 

Pareto front, and then the first sample to be added in the second stage of SIC is 

determined using PGEIC. The relative errors of the surrogate model for the DH, DT, 

and LT are 4.14%, 3.70%, and 8.18% when the model is updated. Since the errors of 

the surrogate model fail to match predefined standards, the validation sample is 

incorporated into the training set for generating the next-generation model. This 

iterative process is repeated until the prediction errors of the surrogate model for DH, 

DT, and LT are less than 1%. The optimization convergence process of the PGEIC-

SIC surrogate model is shown in Figure 5(b). The prediction errors of objectives are 

less than 1% as the second-stage surrogate model is updated to the 18th generation. It 

is apparent that the convergence of the prediction error for DL is faster, whereas DH 

and LT converge a little bit slower. 

The validation sample selected from the Pareto front is chosen as the optimal 

solution of the multi-objective aerodynamic optimization. The parameters v1, v2, v3, 

v4, and v5 of the optimal solution are 0.83, 131.96, -33.80, 55.17, and -69.07, 

corresponding to the 1.00, 0, 0, 0, and 0 of the original model. The optimal model 

exhibits reduced heights for the nose and cab window, coupled with an increased 

height in the region between the two sections, as depicted in Figure 6. This alteration 

contributes to a smoother head shape. The middle contour line is convex, while the 
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bottom contour line is concave, as indicated by the positive value of v4 and the 

negative value of v5. Consequently, the cross-section of the head is more rounded, and 

the longitudinal shape is more slender. 

 
Figure 6: Comparison between the geometry models of the original and optimal. 

 

The DH, DT, and LT of the optimal model are 6.69 kN, 4.53 kN, and 3.52 kN, 

respectively, which are reduced by 4.15%, 3.21%, and 3.56% from the original model. 

Each objective of the optimal model improves performance by roughly 3% to 4%, 

with the DH improving the most. To further analyze the changes in aerodynamic 

performance between the optimal and original train models, as shown in Figure 7, the 

surface pressure coefficient of the carriages and the pressure coefficient of the 

longitudinal center plane of the train are extracted. The surface pressure difference 

between the optimal and original models is mostly centered in the region from the 

nose tip to the cab window of the head car, where the geometric model variations are 

greatest. It is clear that the pressure distribution of the two models from the cab 

window to downstream essentially overlaps, indicating that there is almost no 

difference in surface pressure.  

40 35 30 25 20 15
-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

1.0

C
p

x coordinate

 Optimal model

 Original model

Original

Optimal

Cp

-15 -20 -25 -30 -35 -40
-0.3

-0.2

-0.1

0.0

0.1

0.2

 Optimal model

 Original model

C
p

x coordinate

Original

Optimal

Cp

 
(a) Head car                                                (b) Tail car 

Figure 7: Pressure coefficient of the head and tail car. 
 

The surface pressure suggests that the zone from the nose tip of the original model 

to the cab window is under positive pressure, which is confirmed by the mid-section 

pressure data. However, the optimal model generates a part of negative pressure 

behind the nose tip. The traction force produced by this negative pressure reduces the 

aerodynamic resistance of the optimal model. which is the primary reason why the 
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optimal model has a lower aerodynamic resistance. Moreover, the nose stagnation 

pressure coefficients of the optimal and original models are identical to 1, confirming 

the accuracy of the numerical simulation. Furthermore, surface pressure between the 

body and the upstream part of the cab window differs little between the two models 

in the tail car. The fundamental distinction is still concentrated in the region between 

the cab window and the nose tip, and the positive pressure amplitudes at the cab 

window and the top of the nose tip for the optimal model are larger. Meanwhile, the 

negative pressure of the nose tip upstream is also larger. The positive pressure will 

weaken the aerodynamic resistance and aerodynamic lift of the tail car, while negative 

pressure has the opposite effect. Under the combined influence of the pressure 

difference in the streamlined region of the tail car, the aerodynamic resistance and 

aerodynamic force of the optimal model are slightly less than the original model 
 

 
 

4  Conclusions and Contributions 
 

A sequential infill criterion (SIC) suitable for the Kriging surrogate model is proposed 

in this study. Multi-objective optimization functions are used to test the SIC, which 

verified the feasibility of establishing an SIC surrogate model. Finally, multi-objective 

aerodynamic optimization on the high-speed train using the SIC surrogate model is 

performed, and sensitivity analysis is conducted. The following are the primary 

conclusions: 

 

ZDT1 test results suggest that utilizing EIC in the first stage of the SIC surrogate 

model can improve global prediction. The Kriging surrogate model generated by the 

EIC integrating gradient information (PGEIC) has the highest prediction accuracy in 

the second stage. The PGEIC-SIC surrogate model has the smallest GD index and the 

highest optimization efficiency. The performance of EIC for Pareto front search 

(PEIC), EIC for global search decreases gradually, and the infill criterion for Pareto 

front search using only gradient information (PGIC) performs the worst.  

 

An aerodynamic PGEIC-SIC Kriging surrogate model is constructed using 5 key 

parameters of the nose shape and three objectives of DH, DT, and LT. The average 

prediction errors of the final surrogate model of the validation samples are less than 

1%. The optimal solution's DH, DT, and LT are 4.15%, 3.21%, and 3.56% lower than 

the original model. The nose and cab window heights of the optimal model are 

reduced. Meanwhile, the middle contour line is convex, while the bottom contour line 

is concave. The cross-section of the head is more rounded, and the longitudinal shape 

is more slender. 
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