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Abstract 

 
High-speed railways have gradually shifted from the infrastructure era to the operation 

and maintenance era in China, which puts forward higher requirements for the safe 

and reliable operation of high-speed railway traction power supply system equipment. 

As a railway power transmission channel, the pantograph-catenary system is an 

important part of the traction power supply system. However, the operation has shown 

that most abnormal states come from the pantograph-catenary system (including 

contactors and pantographs). The Power supply safety monitoring system for high-

speed railways (6C system) is a comprehensive system that can measure the dynamic 

and static geometric parameters related to the catenary and detect the faulty working 

status and running status of the components in the pantograph-catenary system. The 

active control of the pantograph can also effectively improve the current collection 

quality of the pantograph-catenary system. The paper provides a detailed introduction 

to the overall architecture of the 6C system, pantograph active control technologies, 

and pantograph active control simulation platform. Finally, combining multi-source 

data fusion, UAV monitoring, fiber optic sensors, and other technologies, a prospect 

is given for the full-sensing intelligent detection of pantograph-catenary on electrified 

railways. 
 

Keywords: pantograph-catenary system, active control, 6C system, data fusion, 
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1  Introduction 

 
By the end of 2023, China's high-speed railway had an operating mileage of more 

than 42,000 kilometers and could circle the earth's equator. China's high-speed rail 

development has gradually transitioned from the construction phase to the operation 

and maintenance phase. The pantograph catenary system of electrified railways serves 

as the power transmission channel for railways and is an essential component of high-

speed railways. Field experience has shown that catenary support structures that are 

affected by complex factors such as external environment and train vibration, and may 

experience loosening, missing, breakage, cracks, and other defects or failures (as 

shown in Figure 1), leading to a decline in their structural reliability. 

 
Figure 1. Different types of faults in the pantograph-catenary system. (a) dropper falling; (b) 

bird’s nest; (c) damage on the pantograph; (d) foreign body. 

 

2.1  Catenary Detection Technology 

Early research on overhead catenary inspection using computer vision techniques 

focused on target localization and defect judgment based on manually designed 

feature detectors. Xu et al. [1] proposed an improved feature extraction method using 

LBP-HOG features for identifying and locating rotating double-ear regions in 

overhead catenary images. Wu et al. [2] conducted the potential occurrence of bird 

nests in the catenary positioning system. They first used the Hough transform to 

extract the linear segments of branches on the outer side of the bird nests. Then, using 

histogram statistics, they analyzed the lengths and directions of all extracted segments 

to create a characteristic description of the bird nests. Finally, they employed an SVM 

classifier to locate the bird nests. However, these methods struggle to meet the 

demands of overhead catenary inspection under complex conditions. In recent years, 

the overhead catenary inspection has witnessed rapid advancements, driven by the 

burgeoning development of deep learning techniques, such as deep convolutional 

neural networks (CNNs) [3]. These advancements have opened possibilities for 

intelligent overhead catenary inspection, offering enhanced capabilities and 

performance. For component localization, several studies [4] have employed the 

original Faster R-CNN network to achieve accurate localization of different overhead 

catenary components, including single-category components, rotating double-ears, 

and equipotential lines. In the realm of fine-grained region extraction, Ref. [5] has 
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employed segmentation models YOLACT to perform pixel-level region segmentation 

on cropped component patches extracted from object detection results. These 

approaches have been successfully applied to segment components such as pins, 

positioning line clamps, inclined strut sleeves, and their tightening bolts. In anomaly 

detection, Zhang et al. [6] employed the instance segmentation algorithm 

YOLACT++ to extract masks of support sleeves and their tightening bolts and nuts. 

They then analyzed the existence of these masks and their geometric relationships to 

detect loose fasteners. 

2.2  Active Pantograph Control Technology 

When an electric locomotive travels at high speeds, pantograph-catenary vibrations 

cause fluctuations in the contact force between the pantograph and the catenary, 

resulting in poor current collection, reduced locomotive performance, and even 

damage to electrical equipment. To suppress pantograph-catenary coupling vibrations 

and improve the current collection capacity of high-speed trains, the active pantograph 

is one of the most promising methods. Over the years, to reduce contact force 

fluctuations and improve current collection quality, people have conducted extensive 

research and analysis on the pantograph-catenary relationship both domestically and 

internationally [7]. Various measures have been proposed, such as optimizing the 

catenary structure [8], optimizing the pantograph structure [9], optimizing the spacing 

between double pantographs [10], and optimizing the static uplift force of double 

pantographs [11]. However, these measures have certain limitations. Catenary 

structure optimization can only be implemented on the built lines. Applying it to 

existing lines requires much manpower and resources, resulting in high costs. Early 

researchers proposed using active control technology to improve the pantograph's 

tracking ability. First, active control of the pantograph does not target any specific 

type of catenary or pantograph. With the control algorithm determined, adjusting the 

control parameters can be applied to any pantograph-catenary structure. Second, the 

cost of active control for pantographs is relatively low, requiring only appropriate 

modifications to the pantograph without optimizing or modifying any parameters or 

structures of the catenary. Therefore, it can be applied to various catenaries, from low-

speed to high-speed, and from existing to newly built lines. Finally, active control of 

the pantograph requires only a small amount of state information, such as real-time 

contact force, displacement, and speed of the pantograph head and frame, depending 

on the control algorithm. This characteristic indirectly enhances the system's anti-

interference capability. Research on controllable pantographs has gradually become 

an important topic in pantograph research. G. Poetsch et al. [12] were the first to 

propose various structures and active control concepts for active pantographs. 

Therefore, guiding the active control of pantographs based on sensor data obtained 

from the pantograph-catenary full-sensing monitoring system is also an important way 

to ensure the quality of the current collection. 

2.3  Multi-Source Data Fusion Technology 

Data fusion aims to utilize statistical methods and feature engineering to integrate 

information from different sources, thereby obtaining higher quality, more 

comprehensive, and useful information. Compared with single-source tasks, the 

advantages of data fusion include increasing confidence, reducing system uncertainty, 
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expanding spatiotemporal perception, enhancing system fault tolerance, and 

improving model judgment accuracy. Data fusion methods are classified into different 

levels within a system, including data-level, feature-level, and decision-level fusion. 

Typical traditional data fusion methods include Kalman filtering [13], D-S evidence 

reasoning [14], and neural networks [15]. The Kalman filtering method achieves real-

time fusion representation of redundant data by using the statistical characteristics of 

the measurement model to recursively estimate multi-source data. It is a classic data-

level fusion algorithm [16], but it can only handle linear problems and has low 

observability, making it prone to divergence. D-S evidence reasoning uses Dempster's 

rule of combination to merge individual pieces of evidence into a new body of 

evidence, employing uncertainty intervals and probability intervals to determine the 

likelihood function in multi-evidence situations. Based on this, it performs reasoning 

and fusion and is a typical decision-level fusion algorithm [17]. This algorithm is 

suitable for fusing imprecise and incomplete information but struggles to handle 

inconsistent information. Deep neural networks have powerful feature extraction and 

integration capabilities and can effectively fuse unstructured, high-dimensional, and 

heterogeneous data through representation learning methods. Jiao et al. proposed a 

deep coupled dense convolutional network (CDCN) with complementary data that 

integrates information fusion, feature extraction, and fault classification for intelligent 

diagnosis [18].  

It is worth noting that although the above methods perform well in multi-modal 

data fusion tasks, most of them adopt a "divide and conquer" approach (extracting 

features of different data with different networks and then performing feature fusion) 

without considering the interaction between modalities. To address this issue, inspired 

by domain adaptation [19], some studies have introduced adversarial learning 

mechanisms into multi-modal data. Bhagat et al. proposed a new spatially constrained 

adversarial autoencoder for the fusion of spatial features of data images and spectral 

features of infrared images [20]. Liu et al. introduced an effective adversarial tri-

fusion hashing network (ATFH-N) aimed at cross-modal retrieval, representing one 

of the initial endeavors utilizing adversarial learning for managing multi-modal data. 

[21]. Therefore, introducing multi-source data fusion technology into the pantograph-

catenary intelligent detection system is an important means to improve the monitoring 

performance of the pantograph-catenary state. 
 

2  The 6C Perception System: From Equipment to Industry 
 

As shown in Figure. 2, the 6C system is divided into six parts: the Pantograph and 

Catenary Comprehensive Monitoring System (CPCM-1C), the Catenary Inspection 

Video Monitoring System (CCVM-2C), the Catenary Inspection Online Monitoring 

System (CCLM-3C), the High-Precision Catenary Inspection Monitoring System 

(CCHM-4C), the Pantograph and Catenary Video Monitoring System (CPVM-5C), 

and the Catenary and Power Supply Equipment Ground Monitoring System (CCGM-

6C). Additionally, the data collected by the 6C system is transmitted through a three-

tier data center, gradually transferring from the power supply section to China 

Railway Corporation. Furthermore, each subsystem is equipped with devices or 

apparatus, and algorithms specifically are designed for its purpose and location. 
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Figure 2. The architecture of 6C system. It contains six detecting components and a three-

level data processing center. 

 

2.1  CPCM-1C 

CPCM-1C is a fixed detection device installed on the roof of a high-speed 

comprehensive inspection train [22], which can effectively measure various 

equipment parameter indicators under dynamic environments and conditions. The 

primary function of the high-speed 1C device is to measure the parameters of the 

catenary and pantograph, providing guidance for the operation and maintenance of 

the catenary. The results include catenary status parameters, real-time pantograph 

status, pantograph-catenary current parameters, catenary component image detection, 

and related power supply equipment status. The catenary status parameters mainly 

contain the height of the contact wire, stagger value, hard points, pantograph-catenary 

contact force, speed, and kilometer markers. The layout of the high-speed 

comprehensive inspection train and roof arrangement is shown in Figure. 3. 

 

 

Figure 3. The layout of the 6C device. 

 

The CPAM-1C equipment includes detection sensors, pantograph-catenary video 

surveillance equipment, signal transmission equipment, power supply equipment, 
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signal acquisition equipment, and data processing computers. Its functions are as 

follows: (1) Real-time processing, analysis, and storage of raw test data, reading data 

in standard formats, and continuous real-time display of test data and waveforms; (2) 

Establishing an inspection database and generating defect reports and inspection 

reports using the inspection data; (3) Comparative analysis of historical inspection 

data from the same location. In summary, the 1C device is used for the comprehensive 

detection of the dynamic geometric parameters and current collection quality of the 

pantograph-catenary system on inspection trains. It employs measures such as 

nonlinear distortion compensation and dynamic tilt correction to make sure the 

accuracy and robustness of the inspection train under high-speed and severe vibration 

conditions. 

2.2  CCVM-2C 

The CCVM-2C system is designed to detect the technical status and external 

environment of the catenary system and perform statistical analysis on its technical 

status to guide the maintenance of the catenary. Its detection targets include significant 

changes in the catenary system, such as bird nests, tree invasions, fallen contact wires, 

and disconnected contact wires [22]. The detection method involves using a portable 

video acquisition device installed on the train driver's bridge to monitor the status of 

the catenary system, as shown in Figure 3. Additionally, this equipment features 

functions such as image browsing, video retrieval, image marking, and positioning of 

poles (suspension poles). The CCVM-2C equipment includes high-definition cameras 

with night vision capabilities, a synchronization control module, a power management 

module, a portable computer, cables, and an image processing computer (offline). It 

can effectively determine the external environment that pose threats to the safe 

operation of the catenary power supply equipment. The system segments the video 

based on the information from the catenary poles (or suspension poles) and records 

the detected defects along with their corresponding kilometer markers (or pole 

numbers) and other positioning information. Additionally, it can establish a "one-

pole-one-image" database, allowing for comparative analysis with historical 

inspection results taken at the same location. In summary, the 2C system is deployed 

in EMU (Electric Multiple Unit) inspections to detect changes in the contact 

suspension and foreign object invasions, such as bird nests and tree damage. The 2C 

system uses portable video acquisition equipment for fixed-point status detection, 

temporarily installed on the driver's cab of the EMU. It captures video of the catenary 

status, analyzes the video, and evaluates the condition of the suspension components. 

CCVM-2C primarily detects and identifies significant changes in the catenary system 

through methods such as template matching (HOG, SIFT), machine vision, and deep 

learning. 

2.3  CCLM-3C 

CCLM-3C is an electrified railway overhead catenary status monitoring system that 

provides full coverage and dynamic detection. The detection parameters of the 3C 

device mainly include contact line height, pull-off value, horizontal distance between 

the two contact lines, arc burning time, and overhead catenary temperature [22]. The 

3C system is mainly installed on the roof of the train in front of the pantograph, as 

shown in Figure. 3 CCLM-3C can monitor the operation status of the catenary and 
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track mileage data. According to the needs, the system can also perform the following 

tasks: (1) Use wireless transmission or wireless call transmission to transmit detection 

data in real-time; (2) Use a mobile hard disk method or wireless transmission method 

to transfer data to the train; (3) It allows for fast query and segment detection data, 

including high-definition video. High-definition video is employed for monitoring the 

status of the catenary. Among them, the primary utilization of real-time data is to 

analyze and process the contact between the pantograph and the catenary arc, the 

temperature of the catenary, the dynamic geometric parameters of the catenary, and 

the operation status of the catenary. In addition, real-time data can also automatically 

identify abnormal pantograph-catenary arcs, abnormal catenary temperatures, and 

suspicious geometric defects. In summary, the 3C is installed on EMUs with speeds 

of over 200 km/h to obtain dynamic geometric parameters such as height, offset, line 

spacing, catenary arc (arc rate, arc energy, number of arcs), contact head suspension 

temperature, etc. 

2.4  CCHM-4C 

Maintaining the overhead catenary system is challenging due to the harsh working 

environment and the large number and variety of supporting components [22]. 

CCHM-4C is a promising system [23] that can help address this challenge. The 4C 

inspection vehicle runs at a stable speed on the line to photograph overhead catenary 

components. The system can measure the static geometric parameters of the overhead 

catenary by imaging and data analysis of the overhead catenary components and 

provide guidance for the operation and maintenance of the overhead catenary. In 

addition, the device continuously measures the geometric parameters of the catenary, 

including the precise position of the catenary arm support (or catenary mast), the 

images of the front and rear sides of the equipment, the images of the contact 

suspension (hanger, wire clamp, etc.), and the images of the additional suspension 

area. As shown in Figure. 3, the equipment of CCHM-4C mainly consists of a static 

geometric parameter detection system, high-definition cameras, an anchor point 

automatic identification module, compensation optical equipment and display, and 

operating equipment. In summary, the 4C is designed as a contactless system to assess 

static geometric parameters and detect multiple components on the support and 

suspension devices. The images of the suspension devices are recorded by cameras 

mounted on top of the inspection vehicle. The latest deep learning and other computer 

vision algorithms are employed to detect multi-scale and diverse components under 

various conditions. 

2.5  CPVM-5C 

CPVM5C is installed at the exits and intersections of railway stations to monitor 

the status of pantographs in real time [24]. To monitor the status of pantograph skids, 

CPVM-5C needs to be installed in important areas (local boundaries, section 

boundaries, etc.). CPVM-5C can promptly detect abnormal conditions of pantograph 

skids, narrow the detection range, and provide guidance for the maintenance of the 

overhead catenary. CPVM-5C, as shown in Figure 3, includes a high-speed camera 

array, a pantograph recognition module, a compensation light source device, a 

monitoring computer, a network transmission control module, and a high-

performance server terminal. It can perform the following tasks: (1) Monitor the status 
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of pantographs and the pantograph angle of the working pantograph using image 

acquisition equipment; (2) Remotely transmit monitored images or videos via wired 

or wireless methods; (3) Automatically analyze and process the status of pantograph 

skids, identify abnormal conditions like pantograph skids damage or breakage, and 

alarm in real time; (4) Automatically identify the car number of the monitored 

pantograph. In summary, 5C monitors the status of pantographs at station exits and 

junctions as a video patrol for special overhead catenary sections such as high-speed 

railway stations, mobile depot entrances, station throats, important tunnel entrances, 

turnouts, and bifurcations. It is an important device for detecting abnormal overhead 

catenary conditions based on pantograph skid status. 

2.6  CCGM-6C 

CCGM-6C is installed on specific sections of the overhead catenary and traction 

substations. The CCGM-6C device monitors parameters such as catenary tension, 

vibration, lift, line temperature, and displacement of compensation devices [22]. It can 

detect the technical condition of power supply equipment including insulators, cables, 

and accessories, The monitoring data obtained can be utilized to guide the operation 

and maintenance of the overhead catenary and power supply equipment. As shown in 

Figure. 3, the 6C equipment consists of highly sensitive sensors, a wireless or wired 

transmission network, front-end data acquisition, storage and transmission devices, 

power supply as well as power management, high-performance server terminals, etc. 

In summary, 6C is mainly used to install monitoring equipment in special overhead 

catenary sections and traction substations to monitor the overhead catenary and power 

supply equipment in real-time, guide maintenance work, and monitor objects such as 

overhead catenary tension, vibration, lifting weight, temperature, and insulation 

status. 
 

3  Active Pantograph Control Technology 
 

The core of the active pantograph lies in the control algorithm that considers a 

comprehensive optimization objective and can guarantee safe operation under various 

emergency conditions. Developing a fast-computing and easy-to-implement rational 

controller is challenging, especially during high-speed operation, as the increasing 

number of uncontrollable factors such as vibration and electromagnetic interference 

complicates the study of control algorithms [25]. Advanced and sophisticated 

controllers can consider the variations in contact wire stiffness and employ robust 

control methods to achieve adaptive control [26]. In general, the comprehensive 

optimization objectives proposed by researchers include three aspects: offline arc, 

contact force, and dynamic uplift of the contact wire. Numerous researchers have 

investigated the effects of different control algorithms on flow quality [27]. These 

algorithms include Proportional-Integral-Derivative (PID) control [28], Sliding mode 

control [29], Robust control [26], Fuzzy control [30], Optimal control [31], Linear 

quadratic regulator (LQR) [32], Adaptive robust fault-tolerant control [33], Model 

predictive control (MPC) [27], Feedforward control [25]. The implementation of most 

controllers that require contact force as feedback is challenging because sensors 

cannot be directly installed on the pantograph, which serves as the power transmission 

channel (25KV). In contrast, measuring the displacement and acceleration of the 
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pantograph frame can be achieved relatively easily by using non-contact measurement 

techniques [22]. Wang et al. [34] proposed a novel pantograph control strategy that 

relies on deep reinforcement learning (DRL), which overcomes the complex modeling 

problem of PCS and optimizes behavior strategies through trial and error to complete 

tasks under a given cost function. In addition, they proposed a dual pantograph control 

strategy that considers catenary vibration and wave propagation through process 

learning and reward propagation channels. 

 

 
Figure 4. Active pantograph HIL experiment platform workflow and the system alternates 

between collecting operational status and executing control actions. 

 

 

 

Furthermore, the selection of a suitable actuator that can meet the on-site 

installation conditions and address application bottlenecks is of utmost importance. 

Actuators mainly include airbags (air springs), motors (electromagnetic actuators), 

hydraulic actuators, and deflectors (aerodynamics) [35,36]. Servo motors are known 

for their rapid response to low-power control commands but are susceptible to 

environmental factors such as electromagnetic interference and temperature [35]. 

Cylinders or hydraulic cylinders have a wide adjustment range and are easy to install 

using the original pantograph lifting mechanism, but there is an execution delay [36]. 

Finally, HIL test benches are an effective tool for verifying the performance of active 

pantographs and controllers before actual railway line tests. They are composed of a 

virtual catenary, an actual pantograph, and a virtual locomotive excitation system 

[37]. Figure 4 shows the Active Pantograph HIL experiment platform established by 

Southwest Jiaotong University, in which a computer and an electromagnetic servo 

excitation system are employed to simulate the dynamics of the virtual catenary. The 

computer simulates the PCS contact position in real-time through numerical 

simulation software. The electromagnetic servo excitation system executes motion 

commands and generates excitation to drive the pantograph collector. Although 

testing on existing lines is difficult, active pantographs also need to undergo extensive 

practical testing on HIL test benches before they can be further developed and 

promoted [38]. 
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4  Emerging technologies: from UAV and fiber optic sensors to 

full-sensing monitoring systems 

 
With the progress of science and technology, emerging technologies such as 

unmanned aircraft technology (UAV), fiber optic sensors (sensor networks, etc.), and 

pantograph active control technology have been developed rapidly. How to effectively 

integrate these technologies to build a more efficient electrified railroad pantograph- 

overhead catenary total sensory monitoring system is the next important research 

direction. 

4.1  Emerging technologies 

UAV technology has been widely applied to inspection tasks in various industrial 

fields due to its flexibility, such as power system inspection, geological exploration, 

firefighting search, and rescue. Among them, it is especially popularized in power 

transmission line inspection tasks. Liu et al [39] introduced an improved K-means++ 

algorithm in RetinaNet to align the Anchor to match the actual dimensions of the 

power line components such as towers, fixtures, insulators, etc. Zhao et al [40] applied 

K-means to cluster the visual shapes of objects. Then, shape semantics are generated 

to help faster RCNN detection and inspection of power line bolts. Miao et al [41] 

modified the fine-tuning strategy for insulator detection by inserting an intermediate 

fine-tuning stage that narrows the domain gap between the common and electrical 

tasks. The method smoothed the transfer process from ordinary tasks with large 

datasets to specific tasks with small datasets. Fortunately, the power transmission 

system is like the overhead catenary system, so these studies can provide ideas for 

pantograph inspection in electrified railroads. 

The development of fiber optic sensor technology has revolutionized our daily life 

with a wide range of applications including physical sensors (temperature, pressure, 

vibration, etc.), gas sensors (NH3, CO, NOx, etc.), and automation (vehicles, doorway 

security, safety uses, etc.) [42]. Fiber optics sensors play a vital role in sensing because 

of their excellent inherent properties such as resistance to electromagnetic interference 

(EMI), large bandwidth, information security, and flexibility in sensor head design. 

In addition, fiber optic sensors are free from crosstalk problems, EMI problems, and 

the ability to develop multiple sensors on a single optical fiber to detect different 

signals such as temperature, pressure, strain, and vibration [43]. Liu et al [44] 

proposed a fiber optic-guided motorized rotary laser line scanning thermography 

(FMRLST) system aimed at rapidly detecting impact-damaged cracks in composite 

laminates of unknown orientation. Inspired by this, fiber-optic sensors can be 

implanted into pantograph equipment to monitor the “in-situ information” of the 

pantograph equipment all the time. 

4.3  Electrified railway pantograph-catenary full-sensing intelligent 

monitoring system based on multi-source heterogeneous data fusion 

As can be seen from the above, the 6C system suffers from the problems of limited 

monitoring perspectives and incomplete monitoring periods. Fortunately, UAVs can 

be deployed flexibly and perform monitoring tasks from different angles around the 
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clock. In addition, the fiber optic sensing network can provide “in-situ information” 

of the pantograph equipment, which can provide more comprehensive detection 

information. Therefore, the integration of UAV aerial images and in-situ information 

from fiber-optic sensing network to optimize the existing 6C system is crucial for the 

development of future 6C systems. Data fusion technology is an effective solution to 

the above problems. However, the heterogeneous gap between 6C, UAV, and fiber 

optic data makes traditional data fusion methods difficult to apply. Deep learning-

based methods are widely used in the field of data fusion due to their flexibility and 

efficiency in network design. Among them, how to simultaneously preserve the modal 

specificity and modal non-deformation of different data sources in the data fusion 

process is a key issue in fusing heterogeneous data. To this end, adversarial learning 

and distance metric constraint methods can be utilized to perform the extraction and 

fusion of modal invariance and modal specificity features for heterogeneous data from 

multiple sources. We have made some attempts to propose the following framework 

of cross-domain clustering fusion algorithm for multi-source heterogeneous data 

based on constrained hierarchical neural networks, as shown in Figure 5. 

 

 

 
Figure 5. Fusion framework for multi-source heterogeneous data. 

 

 

First, the data from different data (6C, UAV, and FO) are extracted by different 

neural networks, and then the modal specificity and modal invariance between 

different data modalities are extracted using constraints (soft orthogonality 

constraints, and similarity constraints). Finally, the modal invariance features and 

specificity features are inputted into a feature fusion network (e.g., a hierarchical 

graph fusion network) equipped with adaptive weighting capabilities to perform the 

fusion task. Further, the fused data are synchronized to the 6C data fusion center for 

further analysis [24]. 
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5  Conclusion 

 
This paper presents a brief review of the current research on catenary detection 

technology, active control technology for pantographs, and multi-source data fusion 

technology. Next, it gives a detailed introduction to the key equipment and technology 

of China’s high-speed railway pantograph-catenary automatic detection and 

monitoring system (6C system), including the Pantograph and Catenary 

Comprehensive Monitoring System (CPCM-1C), the Catenary Inspection Video 

Monitoring System (CCVM-2C), the Catenary Inspection Online Monitoring System 

(CCLM-3C), the High-Precision Catenary Inspection Monitoring System (CCHM-

4C), the Pantograph and Catenary Video Monitoring System (CPVM-5C), and the 

Catenary and Power Supply Equipment Ground Monitoring System (CCGM-6C). 

Then, it introduces the active control technology for pantographs, the active control 

simulation platform, and proxy models. Finally, the research status of UAV 

technology and optical fiber sensing technology is introduced, and the outlook for a 

fully perceptive intelligent detection system for the pantograph-catenary system based 

on these two technologies and multi-source data fusion is presented. Specifically, in 

the future, combining the advantages of flexible deployment, scheduling, and shooting 

angles of UAVs with the all-time, comprehensive monitoring characteristics of the 

optical fiber sensing network to complement the deficiencies of the existing 6C 

system is an important means to optimize the intelligent monitoring system of 

electrified railways. 
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