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Abstract

The paper presents a simple and robust approach to an implementation of the harden-
ing soil model into finite element calculations. The implementation of the return stress
mapping exploits the automatic differentiation of tensor variables provided by the Py-
Torch framework. The automatic differentiation allows for a succinct implementation
despite the relatively complex structure of the nonlinear equations in the stress return
algorithm. The presented approach is not limited to the hardening soil model. It can
be utilised in the development and verification of other elasto-plastic constitutive mod-
els where expressing and maintaining the Jacobian matrix over different versions of a
material model is time-consuming and error-prone.
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1 Introduction

The development and testing of any non-trivial elasto-plastic constitutive model is
often an iterative process. The results from the model’s verification and validation
typically involve changes in both the formulation and implementation. Reducing the
amount of computer code that needs to be written and automating the tasks that can be
automated makes the whole process more focused and efficient. This paper shows how
the automatic differentiation (AD) implemented as part of the PyTorch framework can
be utilised to automate the calculation of the Jacobian matrix for the residual functions
within the standard implicit return stress mapping. The structure of the hardening
soil model is presented to show the possible complexity of residual functions. Then
the principles of the implementation are illustrated in a simple composite expression.
Finally, a comparison to closed-form derivatives and numerical derivatives in terms of
performance is provided.

2 Methods

This section briefly introduces the structure of the hardening soil model and the con-
cept of automatic differentiation.

2.1 Hardening soil model

The hardening soil model is a constitutive model for soils developed in [6] and widely
used in geotechnical finite element software. The model features nonlinear stress-
dependent stiffness and two yield surfaces. The first cone-shaped yield surface re-
sembles the Matsuoka-Nakai yield criterion. Its shape is controlled by the hardening
parameter αs, which depends on equivalent deviatoric plastic strain. This yield sur-
face is referred to as the shear yield surface. The second yield surface has an elliptical
shape and resembles the yield criterion of the modified Cam clay model. The size
of this closed yield surface is controlled by preconsolidation pressure pc. This yield
surface is referred to as the cap surface. Both hardening parameters represent the state
of the soil.

The model formulation brings together a number of experimentally verified theo-
ries and modelling approaches such as the modified hyperbolic stress-strain law for
triaxial compression [1], the power law for elastic modulus [2] or Rowe’s dilatancy
theory [5] to name a few. The combination of the relatively independent features built
into a single elasto-plastic model makes its structure rather convoluted when com-
pared to other common elasto-plasticity models for soils such as the modified Cam
clay model. The complexity of its internal structure makes the hardening soil model
an illustrative example for the implementation choices suggested in this paper.
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2.2 Stress return algorithm

The stress update procedure defines how the stress and state of a material at the n-th
pseudo-time instant changes when it is loaded by a small increment of strain ∆εkl.
The stress σn,ij and the hardening parameters αs,n and pc,n at the beginning of a stress
update are known. The stress update procedure then searches for unknown stress σij
and the hardening parameters αs and pc and plastic multipliers λs and λc, i.e. the
primary unknowns at the (n+ 1)-th time instant n+ 1, so that the residua

R1,ij(σ,D,∆ε,∆εps,∆εpc) = σij − σn,ij −Dijkl(∆εkl −∆εpskl −∆εpckl) (1)
R2(αs,∆λs) = αs − αs,n −∆λsHs (2)

R3(fs) = fs (3)
R4(pc,∆pc) = pc − pc,n −∆pc (4)

R5(fc) = fc (5)

are equal to zero. The residuum R1,ij enforces Hooke’s law in incremental form. It
features the elastic tensor Dijkl and the plastic strain increments ∆εpskl and ∆εpckl ob-
tained separately from the flow rules attributed to the shear and the cap yield surfaces,
respectively. The second residuum corresponds to the hardening law for the shear
yield surface, where ∆λs is the plastic multiplier and Hs is the plastic modulus. It
can be shown that increment of the hardening parameter ∆α = ∆λs and therefore the
hardening modulus Hs = 1. The third residuum is the shear yield function fs. The
fourth residuum corresponds to the hardening law for the cap yield surface, where
∆pc is the increment of the hardening parameter pc. The fifth residuum is the yield
function defining the cap yield surface. The paper now proceeds by defining all the
symbols that appear in the above expressions.

The stress-dependent elastic fourth-order tensor is defined as

Dijkl(Eur) = Eur

(
νur

(1 + νur)(1− 2νur)
δijδkl +

1

2(1 + νur)
(δikδjl + δilδjk)

)
(6)

where the current Young’s modulus for unloading-reloading is given as the reference
Young’s modulus multiplied by a stiffness factor

Eur(fE) = Eref
ur fE (7)

The stiffness factor depends on the offset mean stress p̄

fE(p̄) =

(
p̄

p̄ref

)mp

(8)

The offset mean stress is therefore calculated from the offset stress tensor as

p̄(σ̄σσ) =
σ̄ii
3

(9)
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where the offset stress tensor is calculated as

σ̄ij(σσσ) = σij − c cot(φ)δij (10)

and ensures that σ̄ij = 0 at the apex of the shear yield surface.
The flow rule attributed to the shear yield surface reads

∆εpsij (∆λs,nnns) = ∆λsns,ij (11)

where ns,ij are normals to the plastic potential. The normals to the plastic potential
are defined as

ns,ij(sss, q, sinψm) = − 2 sinψm

3− sinψm

δij +
3

2

sij
q

(12)

where the equivalent deviatoric stress is

q(sss) =

√
3

2
sijsij (13)

and the deviatoric part of the stress tensor is

sij(σ̄σσ, p̄) = σ̄ij − p̄δij (14)

The mobilised angle of internal friction

sinφm(Fm) =
√
Fm (15)

depends on the auxiliary variable Fm denoted as the Matsuoka-Nakai factor, which in
turn depends on all three stress invariants I1, I2, I3 as

Fm(I1, I2, I3) =
9I3 − I1I2
I3 − I1I2

(16)

with the stress invariants provided by

I1(σ̄σσ) = σ̄ii (17)

I2(σ̄σσ) =
1

2
(σ̄iiσ̄jj − σ̄ijσ̄ij) (18)

I3(σ̄σσ) =
1

6
(σ̄iiσ̄jjσ̄kk + 2σ̄ijσ̄jkσ̄ki − 3σ̄ijσ̄jiσ̄kk) = det(σ̄σσ) (19)

The sine of the mobilised dilatation angle is defined as

sinψm(sinφm) =
sinφm − sinφcs

1− sinφm sinφcs

(20)

The sine of the friction angle at critical state depends only on the material parameters
and is given by

sinφcs =
sinφ− sinψ

1− sinφ sinψ
(21)
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so it does not evolve during the stress update. The shear yield function is written as

fs(q, sinφm, A) = q −
(
1−Rf

1− sinφ

1− sinφm

sinφm

sinφ

)(
Eref

i

Eref
ur

q + A

)
(22)

where A is the stress-like hardening variable defined as

A(Ei, αs) = Eiαs (23)

and the modulus Ei is calculated analogously to the unloading-reloading modulus Ei

from a reference value and the stiffness factor according to equation

Ei(fE) = Eref
i fE (24)

The smoothed version of the cap yield function has an elliptical shape in thep × q
plane and is written as

fc(p, q, χ, pc) =
q2

(Mχ)2
+ p2 − p2c (25)

where pc is the preconsolidation pressure acting as a hardening variable, M is a model
parameter and the shape factor χ is a function of the Lode angle determining the shape
of the yield surface in the deviatoric plane. The factor χ takes the form

χ(ϑ) =

√
3β

2
√
β2 − β + 1

1

cosϑ
(26)

where the parameter β depends only on the angle of internal friction according to

β =
3− sinφ

3 + sinφ
(27)

and therefore is constant during the stress update. The auxiliary parameter ϑ is defined
as

ϑ(ϑ̄) =
1

6
arccos

(
−1 + cβ sin

2 3θ
)

for θ ≤ 0 (28)

ϑ(ϑ̄) =
π

3
− 1

6
arccos

(
−1 + cβ sin

2 3θ
)

for θ > 0 (29)

where the constant cβ reads

cβ =
27β2(1− β)2

2(β2 − β + 1)3
(30)

The Lode angle θ is defined as

sin 3θ(J2, J3) = −3
√
3J3

2J
3
2
2

(31)
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and the invariants of the deviatoric part of the stress tensor are

J2(sss) =
1

2
sijsij (32)

J3(sss) =
1

3
sijsjkski (33)

The increment of the plastic strain associated with the cap surface is traditionally given
by the flow rule in the form

∆εpckl(∆λc,nc) = ∆λcnc,ij (34)

where the normals to the cap plastic potential are written as

nc,ij(p,sss, χ) =
2

3
pδij +

3sij
(Mχ)2

(35)

Note that the flow direction does not depend on pc. The increment of the preconsoli-
dation pressure follows

∆pc(fE, p,∆λc) = −2HfEp∆λc (36)

and finally, the (non-offset) mean stress is calculated directly from the stress tensor as

p(σσσ) =
σii
3

(37)

The dependencies between the residuals and primary unknowns are displayed in
Figure 1. The figure contains only the variables that change during the stress update
algorithm. These are:

• Residuals R1,ij , R2, R3, R4, R5

• Auxiliary intermediate variables Dijkl, ∆ε
ps
ij , ∆εpcij , ∆pc, fc, Eur, fE , p̄, σ̄ij ,

ns,ij , q, sij , sinφm, Fm, I1, I2, I3, sinψm, fs, A, Ei, fc, χ, ϑ, sin 3θ, J2, J3, nc,ij

• Primary unknowns σij , αs, pc, λs, λc

On the other hand, the following values are kept constant within a single step of the
stress update:

• Model parameters Eref
i , Eref

ur , νur, mp, p̄ref , c, φ, ψ, Rf , M , H

• Values directly calculated from the model parameters φcs, β, cβ

• Values that generally depend on primary unknowns but happen to be constant in
this model formulation Hs

• Values at the beginning of the stress update step σn,ij , αs,n, pc,n

• Prescribed strain increment ∆εij
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Figure 1: Directed acyclic graph representing the dependencies of residuals Ri on the
primary unknowns σij , αs, pc, λs and λc. Note that each variable depends
on all variables to which its arrows point. Therefore each arrow also corre-
sponds to a (partial) derivative. These are subsequently composed via chain
rule. For illustration, the subgraph highlighted in red shows the dependency
of R3 on σij . Each red arrow therefore represents one partial derivative in
equation (38)

2.3 Newton’s method

The standard way to find the values of the primary unknowns, i.e. the roots of the
residual functions, utilises Newton’s method. Its application typically requires us to
express the residuals in the form of a vector-valued function whose argument is a 1D
vector containing the primary unknowns. The derivatives of this residual function with
respect to the primary unknowns is then known as the Jacobian matrix. In the standard
scenario, the Jacobian matrix is calculated by first expressing the partial derivatives of
expressions (2) to (37) and subsequently composing them according to chain rules.

Expressing all elements of the Jacobian matrix for the residual functions defined in
the previous section is beyond the extent of this paper. In fact, the main goal of this

7



paper is to outline a way how the calculation of the Jacobian matrix can be automated
without directly expressing them. Nevertheless, the derivative of the third residuum
R3 with respect to the current stress tensor σij is shown here as an example of which
partial derivatives need to be calculated and how they are composed. The expression
reads

dR3

dσij
=
∂R3

∂fs

(
∂fs

∂ sinφm

∂ sinφm

∂Fm

(
∂Fm

∂I1

∂I1
∂σ̄kl

+
∂Fm

∂I1

∂I1
∂σ̄kl

+
∂Fm

∂I1

∂I1
∂σ̄kl

)
+
∂fs
∂q

∂q

∂smn

(
∂smn

∂σ̄kl
+
∂smn

∂p̄

∂p̄

∂σ̄kl

)
+
∂fs
∂A

∂A

∂Ei

∂Ei

∂fE

∂fE
∂p̄

∂p̄

∂σ̄kl

)
∂σ̄kl
∂σij

(38)

We observe that a) many of the partial derivatives are second or fourth-order tensor
expressions, b) the chain rules quickly become complex when the structure of the de-
pendencies grows and c) visualising the dependencies in the form of a directed graph
helps us to decide which derivatives to express and how to compose them according
to the chain rule.

2.4 Automatic differentiation

Automatic differentiation (AD) is a technique that provides partial derivatives of a
mathematical expression implemented as a function in a computer program. The prin-
ciple of AD requires that a derivative is defined for every elementary operation that the
AD framework offers. In other words, the AD framework knows what the derivative of
addition, subtraction, multiplication, application of elementary function, etc., is. Be-
cause each mathematical expression is a composition of these elementary operations,
the AD framework keeps track of the expression structure and builds an expression
tree similar in principle to the one shown in Figure 1. This expression tree can then be
traversed and the derivatives automatically composed out of the known derivatives of
elementary operations.

Note that AD differs from symbolic differentiation achieved automatically through
computer algebra systems such as Maxima or SymPy. It also differs from numerical
differentiation based on finite differences.

3 Results

Automatic differentiation of tensor expressions is first illustrated on the composite
expressions for Fm viewed as a function of σij as defined in (16) to (19). Then the
results are compared to closed-form derivatives and numerical derivatives in terms of
execution times.
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3.1 Implementation in PyTorch

PyTorch [4] is a machine learning framework for Python that is built around a Tensor
data type. The tensor is a homogeneous multidimensional array similar to ndarray
used in Numpy. Although PyTorch is designed mainly for the development of deep
learning models, its palette of convenient operations on tensors together with auto-
matic differentiation [3] makes it a convenient tool for other engineering problems
such as fast and straightforward prototyping and verification of elasto-plastic material
models. From this point of view its main useful features are the ability to specify the
operations on tensors directly in the Einstein summation notation and the automatic
calculation of derivatives of any composite scalar or tensor expression.

For illustration, consider the expressions for Fm, I1, I2, I3 defined in (16) to (19).
Their implementation is

>>> from torch import Tensor, einsum, det
>>> def Fm(I1: Tensor, I2: Tensor, I3: Tensor):
... """Matsuoka-Nakai factor."""
... return (9.0 * I3 - I1 * I2) / (I3 - I1 * I2)
...
>>> def I1(sigma: Tensor):
... """First invariant of stress tensor."""
... return einsum("ii", sigma)
...
>>> def I2(sigma: Tensor):
... """Second invariant of stress tensor."""
... a = einsum("ii,jj", sigma, sigma)
... b = einsum("ij,ij", sigma, sigma)
... result = (a - b) / 2.0
... return result
...
>>> def I3(sigma: Tensor):
... """Third invariant of stress tensor."""
... return det(sigma)

The expressions are implemented in separate functions which makes it easier to test
them and reuse them. To express the Matsuoka–Nakai factor Fm directly as a function
of stress σij the above functions are composed as follows

>>> def Fm_from_sigma(sigma: Tensor):
... """Fm as a function of stress tensor."""
... _I1 = I1(sigma)
... _I2 = I2(sigma)
... _I3 = I3(sigma)
... return Fm(_I1, _I2, _I3)

With the composite function Fm(σ) at hand, it is now easy to create a function return-
ing its derivatives ∂Fm

∂σij
. The implementation using PyTorch’s jacobian function is

as straightforward as

>>> from torch.autograd.functional import jacobian
>>> def dFm_dsigma_ad(sigma: Tensor):

9



... """Derivative of Matsuoka-Nakai factor wrt stress tensor."""

... return jacobian(Fm_from_sigma, sigma)

In context of the stress update algorithm based on Newton’s method, the above concept
is applied on a vector valued residual function of vector argument, i.e., the function
that accepts all primary unknowns and returns the values of all residua.

3.2 Closed-form derivatives

For illustration purposes the above derivatives obtained via AD are compared com-
pared with closed-form derivatives calculated through chain rule. The partial deriva-
tives of Fm are

>>> def dF_m_dI1(I1: Tensor, I2: Tensor, I3: Tensor):
... return -I2 / (-I1 * I2 + I3) \
... + I2 * (-I1 * I2 + 9 * I3) / (-I1 * I2 + I3) ** 2
...
>>> def dF_m_dI2(I1: Tensor, I2: Tensor, I3: Tensor):
... return -I1 / (-I1 * I2 + I3) \
... + I1 * (-I1 * I2 + 9 * I3) / (-I1 * I2 + I3) ** 2
...
>>> def dF_m_dI3(I1: Tensor, I2: Tensor, I3: Tensor):
... return 9 / (-I1 * I2 + I3) \
... - (-I1 * I2 + 9 * I3) / (-I1 * I2 + I3) ** 2

and the partial derivatives of stress invariants are

>>> from torch import eye
>>> delta = eye(3) # Kronecker delta
>>> def dI1_dsig():
... return delta
...
>>> def dI2_dsig(sigma: Tensor):
... _I1 = I1(sigma)
... return _I1 * delta - sigma
...
>>> def dI3_dsig(sigma: Tensor):
... term1 = einsum("ik,kj->ij", sigma, sigma)
... term2 = -I1(sigma) * sigma
... term3 = I2(sigma) * delta
... return term1 + term2 + term3

The chain rule composes the partial derivatives as follows

>>> def dFm_dsigma_cf(sigma):
... _I1 = I1(sigma)
... _I2 = I2(sigma)
... _I3 = I3(sigma)
... return dF_m_dI1(_I1, _I2, _I3) * dI1_dsig() \
... + dF_m_dI2(_I1, _I2, _I3) * dI2_dsig(sigma) \
... + dF_m_dI3(_I1, _I2, _I3) * dI3_dsig(sigma)
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Finally, we compare the derivatives calculated through AD to derivatives calculated
the standard way via chain rule

>>> from torch import rand, transpose, allclose
>>> randmat = rand((3,3)) # random 3x3 matrix
>>> sigma = -100.0 * delta - 10.0 * (randmat + transpose(randmat, 0,

1))
>>> dFm_ad = dFm_dsigma_ad(sigma)
>>> dFm_cf = dFm_dsigma_cf(sigma)
>>> print(allclose(dFm_ad, dFm_cf))
True

Regarding the performance, the AD implementation of ∂Fm

∂σij
showed 35.8% speedup

compared to the closed-form implementation. The execution time was also measured
for implementation based on numerical differentiation. In particular, the implementa-
tion based on the central difference formula, i.e. an implementation that required two
function calls for each element of the function’s tensorial argument σij , was approxi-
mately 3 times slower than the closed-form implementation.

4 Discussion

The above example shows that PyTorch operations on tensor variables, e.g., the func-
tions einsum() or det() together with automatic differentiation make the imple-
mentation of the elasto-plastic material model as straightforward as writing the ex-
pressions for the residuals. The derivatives needed for both Newton’s method within
the stress update and calculation of the algorithmic stiffness matrix are calculated au-
tomatically by the AD framework.

The performance test on a very simple composite expression for the Matsuoka-
Nakai factor Fm slightly favours the AD implementation. Nevertheless, such a test
is far from representative and there certainly are cases where hard-coded closed-form
gradient outperforms the AD-based implementation. When performance is in ques-
tion, there are other approaches to make the stress update more efficient such as for-
mulating the stress update in terms of stress invariants instead of full stress tensor, or
at least exploiting the symmetry of stress and strain tensors.

5 Conclusions

The paper outlined an approach to implementation of an elasto-plastic constitutive
model which does not require hand-calculating the derivatives of the residual func-
tions needed by Newton’s method in the stress update procedure and in the formu-
lation of the algorithmic stiffness operator. The implementation builds on automatic
differentiation implemented in the PyTorch package for Python.
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