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Abstract

This paper presents a parallel method aimed at reducing speckle noise in ultrasound
medical images, utilizing fuzzy logic and the fuzzy peer group concept. The method
is implemented on multi-core interfaces using Open Multi-Processing. The efficiency
of the method is evaluated based on execution time, Mean Squared Error, and Peak
Signal-to-Noise Ratio. The evaluation is conducted on medical images from the Ul-
trasoundcases database that have been contaminated with speckle noise. Experimen-
tal results demonstrate that the proposed method obtains good performance in terms
of the aforementioned objective quality measures. Furthermore, the application of
multi-core optimization strategies shows that the new filter can reduce speckle noise
in real-time.

Keywords: parallel computing, fuzzy logic, medical ultrasound imaging, noise re-
duction, speckle noise, speckle reduction.

1 Introduction

Medical ultrasound (US) images are adversely affected by speckle noise, which de-
grades their quality and can obscure vital information essential for accurate diagnosis.
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The application of effective filtering techniques is crucial for enhancing diagnostic
capabilities. Consequently, the reduction of speckle noise is a vital component in the
processing of ultrasound images.

Numerous methods have been proposed for speckle noise reduction in ultrasound
images. Many of these methods rely on local statistics, such as those by Lee [1],
Frost [2], Kuan [3], median filter [4,5], bilateral filter [6], speckle reducing anisotropic
diffusion (SRAD) [7], oriented SRAD (OSRAD) [8], squeeze box filter (SBF) [9,10],
and guided filter [11, 12]. Additionally, wavelet-based approaches have demonstrated
significant potential for speckle denoising [13–15]. Another notable category of fil-
ters for speckle noise reduction includes those based on the classical nonlocal means
(CNLM) filter [16]. Although the CNLM filter was not initially designed for speckle
noise, several studies have adapted it for this purpose [17, 18].

In [19], the authors introduced a color image filter for the reduction of mixed
Gaussian-impulse noise, termed Fuzzy Peer Group Averaging Filter (FPGA), which
utilized the fuzzy peer group concept. Experimental results indicated that this tech-
nique delivered competitive performance in processing mixed Gaussian-impulse noise
in color images compared to other state-of-the-art methods. However, its efficacy has
not been evaluated in the context of speckle noise. In this study, we propose a speckle
noise filtering method inspired by the concept presented in [19]. The proposed method
calculates the optimal number of components in the peer group using a fuzzy logic
process, followed by a smoothing process employing only the best pixels from the
peer group.

Moreover, sequential computers are inadequate for executing this algorithm in the
real-time requirements of medical applications. To address this issue, we introduce
a parallel algorithm aimed at enhancing computational efficiency to make it suitable
for real-time medical processing. This parallel algorithm has been implemented for
shared-memory architectures using Open Multi-Processing (OpenMP). Results ob-
tained on a multi-core system demonstrate that the parallel algorithm achieves effi-
ciencies ranging from 74.75 to 80.37 for different ultrasound images.

Section 2 provides a detailed description of the filter design. The experimental
results are presented in Section 3, and the conclusions are discussed in Section 4.

2 Methods

In this section we overview the formulations of the proposed method and its parallel
implementation.
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2.1 Fuzzy method

Consider a grayscale image I defined as a mapping Z2 → Z. This means the image
is represented by a matrix I of size M × N consisting of pixels xi, indexed by i,
that specify the pixel positions within the image domain Ω. The pixel value xi, for
i = 1, 2, . . . ,M × N , quantized into the integer domain, denotes the pixel intensity.
To reduce speckle noise, a fuzzy averaging among the pixels of the fuzzy peer group is
performed. Algorithm 1 presents the filtering algorithm. The subsequent paragraphs
detail the steps of this algorithm.

Require: Image I , parameter Fσ

Ensure: Filtered image
1: for each pixel xi in I do
2: Compute m̂, the optimal number of pixels for P(m,xi)
3: m̂ = arg maxm∈NW

CFR1(m)
4: Speckle Noise Smoothing:

5: xout =
∑m̂

j=0 FP
xi
m̂

(x(j))x(j)∑m̂
j=0 FP

xi
m̂

(x(j))

6: end for
Algorithm 1: Speckle denoising method

Let W be a filtering window of n × n pixels centered at pixel x0. Let xi ∈ W ,
for i = 1, . . . , n2 − 1, represent the neighboring pixels of x0. The proposed method
utilizes the fuzzy peer group concept as described in [19] and employs a fuzzy metric.

The peer group concept [20] is based on ordering neighboring pixels according to
their similarity to the central pixel x0. Let S be an appropriate similarity measure [21]
between two pixels. Pixels xi ∈ W are ordered in descending order based on their
similarity to x0. This results in an ordered set W ′ = {x(0), x(1), . . . , x(n2−1)}, where
S(x0, x(0)) ≥ S(x0, x(1)) ≥ . . . ≥ S(x0, x(n2−1)), and x(0) = x0.

According to the peer group concept [20], the peer group P(m,x0) of m+1 pixels
associated with x0 is defined as:

P(m,x0) = {x(0), x(1), . . . , x(m)}. (1)

In [19], a fuzzy logic algorithm is introduced to compute the optimal number of
pixels m̂ in a peer group. The fuzzy peer group for the central pixel x0 in a window
W is given by the fuzzy set FP(m̂, x0) determined on the set {x(0), x(1), . . . , x(m̂)}
and defined by the membership function FP x0

m̂ = S(x0, x(i)).
The optimal number m̂ of pixels in P(m,x0) is determined as the number m ∈

NW = {1, 2, . . . , n2 − 1} that maximizes the certainty of the Fuzzy Rule FR1.

Fuzzy Rule FR1: Certainty for m to be the best number of pixels in P(m,x0)

IF “xm is similar to x0” and the accumulated similarity for x(m) is large

THEN “the certainty for m to be the best number of pixels for P(m,x0) is high”.
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CFR1(m) represents the certainty of Fuzzy Rule FR1 for m. Then, CFR1(m) is
computed for each m ∈ NW , and the m that maximizes the certainty is chosen as the
optimal number m̂ of pixels in P(m,x0), i.e., m̂ = arg maxm∈NW

CFR1(m).
The certainty of ” xm is similar to x0” is determined by the membership function

Cx0 given by the similarity function:

Cx0(x(i)) = S(x0, x(i)), i = 0, 1, . . . , n2 − 1. (2)

The accumulated similarity for x(m), denoted by Hx0(x(m)), is given by:

Hx0(x(i)) =
k=i∑
k=0

S(x0, x(k)), i ∈ {0, 1, . . . , n2 − 1}. (3)

Then, the certainty of ” Hx0(x(m)) is large” is determined by the membership function
µx0 defined as:

µx0(x(i)) = −
(Hx0(x(i))− 1)(Hx0(x(i))− 2n2 + 1)

(n2 − 1)2

i = 0, 1, . . . , n2 − 1. (4)

The product t-norm is used as the conjunction operator, thus no defuzzification is
required. Therefore, CFR1(m) = Cx0(x(m))µ

x0(x(m)).
The fuzzy similarity function employed is:

S(xi, xj) = e−
∥xi−xj∥

Fσ i, j = 0, . . . , n2 − 1, (5)

where ∥ · ∥ denotes the Euclidean norm, and Fσ is a parameter analyzed in Section 3.
This function is chosen because it is a fuzzy metric [22], which has been demonstrated
to be suitable for fuzzy image processing [19, 23]. The similarity S ranges in the
interval [0, 1], and S(x0, xi) = 1 if and only if x0 = xi.

2.2 Parallel Implementation

To describe the parallel method, the image domain Ω is divided into P subdomains
{Ωi}Pi=1, where P represents the number of computation elements. This domain de-
composition satisfies:

Ωi ⊂ Ω,
⋃

i=1,2,...,P

Ωi = Ω, and Ωi ∩ Ωj = ∅ for i ̸= j. (6)

Figure 1 illustrates an example of the decomposition used in the numerical experi-
ments. In this example, the image is divided into four subdomains.
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Figure 1: Image domain decomposition: Distributed image on 4 computing elements

3 Experiments

We have implemented the parallel version of the algorithm on a multi-core platform
using OpenMP [24]. Both the serial and parallel codes were developed in C, utilizing
GNU C Compiler (GCC) version 7.5.0. The experiments were conducted on a multi-
core Intel Xeon CPU X5660 (12 cores), operating at 2.8 GHz, with 48 GB RAM,
running CentOS Linux version 5.6. Various real ultrasound images sourced from the
UltrasoundCases database [25] were used in the experiments (see Figure 2). These
images were artificially corrupted with different levels of speckle noise, with variances
σ = 0.2, σ = 0.4, σ = 0.6, and σ = 0.8.

(a) US 1 (450× 600 pixels) (b) US 2: 378× 484 pixels

Figure 2: Ultrasound images used in experiments.

To optimize the input parameter Fσ in Equation (5), the algorithm’s performance
was evaluated in terms of Peak Signal-to-Noise Ratio (PSNR) as a function of Fσ. The
optimal results were achieved for Fσ = 400. The parallel performance was assessed
by computing the speed-up SP as SP = Tseq/TP , where Tseq is the computational time
of the sequential method, and TP is the computational time of the parallel algorithm.

Figure 3 displays the filter outputs for the US 2 image, which has been contami-
nated with various levels of speckle noise (σ = 0.2, σ = 0.4, σ = 0.6 and σ = 0.8)
for visual comparison. The results demonstrate the effective denoising performance
of the proposed algorithm, while also preserving the edges and contours of the image.
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(a) noisy image, σ = 0.2 (b) filter ouput

(c) noisy image, σ = 0.4 (d) filter ouput

(e) noisy image, σ = 0.6 (f) filter ouput

(g) noisy image, σ = 0.8 (h) filter ouput

Figure 3: Filter outputs for visual comparison. Image US 2 contaminated with various
levels of speckle noise with variance σ.

Table 1 presents the denoising performance metrics in terms of mean-square error
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(MSE) and PSNR [21] for ultrasound images corrupted with varying levels of speckle
noise. The consistently low MSE values and high PSNR values across all noise levels
indicate the robust denoising capability of the proposed algorithm. These findings
were consistent across all tested images.

US 1 US 2
Noise Image MSE PSNR MSE PSNR
σ = 0.2 Noisy 179.2 25.59 155.4 26.21

Filtered 7.7 29.82 30.6 33.26
σ = 0.4 Noisy 680.8 19.80 574.0 20.54

Filtered 129.6 27.00 76.1 29.31
σ = 0.6 Noisy 1352.4 16.81 1150.2 17.52

Filtered 220.2 24.70 144.3 26.53
σ = 0.8 Noisy 2065.8 14.97 1793.4 15.59

Filtered 324.7 23.01 228.35 24.54

Table 1: Quality measures MSE and PSNR for US images contaminated with speckle
noise σ = 0.2, σ = 0.4, σ = 0.6 and σ = 0.8.

Table 2 show the computational time, speed-up and efficiency obtained for the
test ultrasound images contaminated with different level of speckle noise (variance
σ = 0.2, σ = 0.4, σ = 0.6 and σ = 0.8). It can be observed that the level of noise
does not affect the speed-up. This fact is due to the characteristics of the filter. Results
show that the parallel algorithm achieves speed-ups in the range 8.97 to 9.64 when the
12 cores of the multi-core system are used.

Noise Image Sequential time Parallel time Speed-up Efficiency
σ = 0.2 US 1 1.2323 0.1320 9.33 77.79

US 2 0.8423 0.0939 8.97 74.75
σ = 0.4 US 1 1.2398 0.1298 9.54 79.54

US 2 0.8498 0.0890 9.54 79.51
σ = 0.6 US 1 1.2401 0.1304 9.50 79.22

US 2 0.8500 0.0894 9.49 79.14
σ = 0.8 US 1 1.2498 0.1295 9.64 80.37

US 2 0.8499 0.0906 9.37 78.16

Table 2: Computational time in seconds, speed-up and efficiency for US images con-
taminated with speckle noise σ = 0.2, σ = 0.4, σ = 0.6 and σ = 0.8.
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4 Conclusions

A parallel method based on fuzzy peer groups and fuzzy logic has been presented
to reduce speckle noise in medical ultrasound images. The method has been imple-
mented on multi-cores using OpenMP. The implementation has been applied to reduce
speckle noise on ultrasound images from the Ultrasoundcases database. The filter ob-
tained robust results in terms of the objective quality mesures MSE and PSNR. The
parallel algorithm achieved significant speed-ups, reducing computational times and
rendering the method suitable for real-time medical image processing. Future work
will focus on implementing the algorithm on GPUs using CUDA.

Acknowledgements

This research was supported by the Spanish Ministry of Science and Innovation (Grant
PID2021-123627OB-C55) co-financed by FEDER funds and by the University of Al-
icante (Grants UAUSTI22-02, UADIF23-09 and VIGROB23-020).

References
[1] J.S. Lee, “Digital image enhancement and noise filtering by use of local statis-

tics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2
(2): 165–168, 1980.

[2] V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, “A model for radar
images and its application to adaptive digital filtering of multiplicative noise”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2):
157–166, 1982.

[3] D.T. Kuan, A.A. Sawchuk, T.C. Strand, P. Chavel, “Adaptive noise smoothing
filter for images with signal-dependent noise”, IEEE transactions on pattern
analysis and machine intelligence, PAMI-7(2): 165–177, 1985.

[4] T. Huang, G. Yang, G. Tang, “A fast two-dimensional median filtering algo-
rithm”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1):
13–18, 1979.

[5] T. Loupas, W. McDicken, P.L. Allan, “An adaptive weighted median filter for
speckle suppression in medical ultrasonic images”, IEEE transactions on Cir-
cuits and Systems, 36(1): 129–135, 1989.

[6] C. Tomasi, R. Manduchi, “Bilateral filtering for gray and color images”, in Sixth
International Conference on Computer Vision, pages 839–846, IEEE Computer
Society, 1998.

[7] Y. Yu, S.T. Acton, “Speckle reducing anisotropic diffusion”, IEEE Transactions
on image processing, 11(11): 1260–1270, 2002.

[8] K. Krissian, C.F. Westin, R. Kikinis, K.G. Vosburgh, “Oriented speckle reducing
anisotropic diffusion”, IEEE Transactions on Image Processing, 16(5): 1412–
1424, 2007.

8



[9] P.C. Tay, S.T. Acton, J.A. Hossack, “A stochastic approach to ultrasound de-
speckling”, in 3rd IEEE International Symposium on Biomedical Imaging: Nano
to Macro 2006, pages 221–224, IEEE, 2006.

[10] P.C. Tay, S.T. Acton, J.A. Hossack, “Ultrasound despeckling using an adap-
tive window stochastic approach”, in 2006 International Conference on Image
Processing, pages 2549–2552, IEEE, 2006.

[11] K. He, J. Sun, X. Tang, “Guided image filtering”, in Proceedings of the 11th
European Conference on Computer Vision: Part I, pages 1–14. Springer-Verlag,
2010.

[12] J. Zhang, G. Lin, L. Wu, Y. Cheng, “Speckle filtering of medical ultrasonic
images using wavelet and guided filter”, Ultrasonics, 65: 177–193, 2016.

[13] A. Pizurica, W. Philips, I. Lemahieu, M. Acheroy, “A versatile wavelet domain
noise filtration technique for medical imaging”, IEEE Transactions on Medical
Imaging, 22(3): 323–331, 2003.

[14] S. Gupta, R. Chauhan, S. Sexana, “Wavelet-based statistical approach for
speckle reduction in medical ultrasound images”, Medical and Biological Engi-
neering and computing, 42(2): 189–192, 2004.

[15] G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, A. Lanzolla, “Linear filter-
ing of 2-D wavelet coefficients for denoising ultrasound medical images”, Mea-
surement, 45(7): 1792–1800, 2012.

[16] A. Buades, B. Coll, J.M. Morel, “A review of image denoising algorithms, with
a new one”, Multiscale Modeling & Simulation, 4(2): 490–530, 2005.
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