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Abstract

Using the freely available DriAer passenger car geometries, the benefits of our Carte-
sian adaptive lattice Boltzmann solver AMROC-LBM for simulating the aerodynam-
ics of vehicles in motion are demonstrated. A large eddy simulation (LES) approach
with wall function model is applied to approximate the transient turbulent flow field,
while motion is incorporated in a scalable way by representing complex moving bod-
ies with signed distance level set functions and moving wall boundary conditions. The
adaptive lattice Boltzmann-LES method in AMROC-LBM is first validated against
experimentally measured drag coefficients of a single car geometry. Subsequently, a
study of an overtaking manoeuvrer at 25% scale is conducted and verified with previ-
ously obtained simulation results from StarCCM+. Finally, predictions for a realistic
overtaking manoeuvrer at full scale are presented.
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1 Introduction

Simulating the transient aerodynamic behaviour of road vehicles in relative motion to
one another requires a numerical method that is able to represent the turbulent flow
fields around complex geometries with high accuracy and, at the same time, is able
to accommodate the motion with a suitable meshing approach. Of paramount im-
portance for vehicle aerodynamics is an adequate numerical treatment of the viscous
boundary layers that develop over planar surfaces. Finite-volume-based computa-
tional fluid dynamics (CFD) codes, that can handle such setups competently, are rela-
tively rare and typically employ geometry-aligned structured boundary-layer meshes
around the geometries that can be set in motion by allowing the near-body meshes to
slide over a usually unstructured background mesh. Overlapping sub-meshes in this
overset or Chimera approach synchronize respective boundary data within a time step
with complex, non-conservative interpolation operations. Imminent ambiguities arise
when multiple boundary meshes would be overlapping.

Here, we use Cartesian dynamically adaptive meshes instead that are refined on-
the-fly based on geometry motion as well as the turbulent flow field. An advanced
lattice Boltzmann method (LBM) with LES sub-grid scale modelling is utilized to ap-
proximate the flow field. Correct near-wall boundary layer behaviour is incorporated
by a turbulent wall function. All models are implemented in our in-house MPI-parallel
Cartesian mesh adaptation framework AMROC. To demonstrate the accuracy of the
latest version of our aerodynamics solver AMROC-LBM [1], we predict the drag co-
efficients of the freely available DriAver car geometries. While other solvers generally
struggle to represent the wheels with moving spokes, our dynamically adaptive Carte-
sian approach easily incorporates this complexity. Finally, two overtaking manoeuvr-
ers of a DrivAer car passing an identical DrivAer geometry are modelled. While the
second configuration is in full car scale, the first case serves as verification using a
reduced 25% scale and is compared to transient drag predictions from the commercial
CFD solver StarCCM+, which employs an overset finite-volume mesh method with
static wheel representation.

The paper is organized as follows: In Section 2 the crucial components of the
adaptive LBM-LES method of AMROC-LBM are described. Section 3 presents sim-
ulation results for single cars, while Section 4 describes the transient results for the
two overtaking scenarios. Finally, the conclusions are given in Section 5.

2 Adaptive lattice Boltzmann solver

2.1 Lattice Boltzmann scheme

The lattice Boltzmann method is an instationary weakly-compressible method derived
from the lattice gas automata for the discretization of the Boltzmann equation. It de-
scribes the fluid behaviour by considering a statistical description of the molecules’
behaviour through a distribution function f(x, ξ, t). The distribution function rep-

2



resents the probability density of molecules being at a location x, which have the
velocity ξ, at time t. The key idea of the LBM approach is to use a finite set of
propagation directions to discretize the velocity space and represent the contribution
from each discrete unit velocity direction with a discrete partial distribution function
fα(x, t). Here, all computations are three-dimensional and 27 unit direction vectors
eα are used, which is referred to as a D3Q27 scheme. As it is most common, our im-
plementation of the LBM is internally on the non-dimensional unit lattice and is split
into two steps. The first one is the streaming of each distribution field by exactly one
lattice point as specified by the respective unit direction vector, i.e.,

f̌α(x, t) = fα(x− eα, t). (1)

The second step is the collision. Here, the regularized BGK (Bhatnagar-Gross-Krook)
collision operator described by Latt and Chopard [2] is used. It reads

fα(x, t+∆t) = f̌ (0)
α (x, t) + (1− ω)f̌ (1)

α (x, t), (2)

where ω is the non-dimensional relaxation frequency of the discrete method. The
relaxation frequency is related to the kinematic viscosity of the fluid through ν =
c2s
(
1
ω
− 1

2

)
∆t, where the speed of sound cs = 340m/s has been used for all compu-

tations below, and ∆t is the physical time step. In Eq. (2), the superscriptˇ represents
the post-propagation distribution state. To compute the equilibrium part f (0) and the
non-equilibrium part f (1)

α = fα − f
(0)
α , the regularized recursive (RR) approach by

Malaspinas [3] is applied. The implemented model uses the recursive approach up to
order 6 for both equilibrium and non-equilibrium parts. It has been shown that this
RR-BGK scheme is stable and accurate at high Reynolds numbers, which makes it
suitable for aerodynamics.

In order to evaluate the physical quantities of interest, the non-dimensional distri-
butions on the unit lattice need to be rescaled according to the actual physical time
step ∆t and the physical grid spacing of the Cartesian mesh ∆x, using the lattice
speed c = ∆x/∆t. In the LBM, the macroscopic variables such as the pressure and
velocities are recovered as moments of the distribution functions. The gas density ρ
and the velocity vector u are evaluated by a simple rescaling of the 0th moment and
1st moment of the probability density with a reference density ρ0 and the lattice speed,
respectively. i.e.

ρ = ρ0
∑
α

fα, u = c
∑
α

eαfα. (3)

The total pressure can be computed from the density as p = c2s(ρ − ρ0) + p0, where
cs = cc̃s is the speed of sound and p0 is the ambient pressure. The lattice speed of
sound c̃s is equal to 1/

√
3 for D3Q27.

2.2 Adaptive mesh refinement

The LBM used here is formulated for an equidistant Cartesian mesh. In order to
increase accuracy at a reduced computational cost, a block-structured adaptive mesh

3



refinement (SAMR) technique is applied [4]. In this approach, cells are clustered
into non-overlapping rectangular grids. Each grid has a halo of cells for boundary
conditions and synchronization, cf. [4]. The mesh widths of two adjacent levels follow
the relation ∆xc/∆xf = ∆tc/∆tf = r, where the superscript f refers to the fine mesh
and c refers to the coarse mesh. The simultaneous refinement of spatial and temporal
mesh width is fully compatible with the explicit LBM and by formulating the LBM on
cell-based data structures, the method can be made to fit smoothly into the recursive
SAMR refinement and integration procedure. More details of our implementation of
an adaptive LBM within AMROC can be found for instance in [5].

Grids at different levels need to exchange distribution functions at their interface.
For fine to coarse transition, distribution functions of fine cells surrounding a coarse
cell are averaged. For coarse to fine transition, a spatial and temporal interpolation
is used to create the fine distribution functions from surrounding coarse cells, cf. [5].
Distribution functions between levels are further modified by the approach described
by Dupuis and Chopard [6], where the non-equilibrium part is rescaled as

f c
α(x, t) = f f→c(0)

α (x, t) +
rωf

ωc
f f→c(1)
α (x, t), (4)

f f
α(x, t) = f c→f(0)

α (x, t) +
ωc

rωf
f c→f(1)
α (x, t), (5)

and ωc and ωf are the non-dimensional relaxation frequencies of the coarse and fine
level, respectively. This approach ensures the continuity in density and velocity, which
depends on the equilibrium part, as well as on the strain-rate tensor Sij .

2.3 Large eddy simulation

In order to make turbulent computations at technically relevant Reynolds numbers
tractable, the small scales of the turbulent flow are not resolved but modelled with
large eddy simulation. The LES model used here is the Smagorinsky model [7]. In
this model, the unresolved eddies are represented through an eddy viscosity νt that is
added to the kinematic viscosity ν. The eddy viscosity is calculated from the filtered
strain rate tensor Sij as

νt = (Csm∆x)2|S|, (6)

where the coefficient Csm(x, t) is locally evaluated [8] and |S| =
√

2SijSij . For

the calculation of Sij we have adopted the ”consistent strain” approach described by
Malaspinas and Sagaut [9]. Since the kinematic viscosity is related to the relaxation
frequency, the eddy viscosity is utilized to alter ω locally to

ω⋆ =
c2s∆t

(ν + νt) + c2s∆t/2
. (7)
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2.4 Boundary conditions

In the SAMR algorithm, it is natural to implement boundary conditions through the
use of ghost cells. At the inlet of the numerical domain, we impose the equilibrium
distribution functions. They are computed from macroscopic variables ρ and u. The
velocity u is chosen depending on the case. The density ρ is extrapolated from the
first fluid cell normal to the boundary. The non-equilibrium is calculated following
Guo et al. [10] considering ∆ = 0.5 as

f (1)
α (x, t) = 0.5f (1)

α (x+ eα, t) + 0.5f (1)
α (x+ 2eα, t). (8)

Distribution functions at the outlet of the numerical domain are imposed similarly,
except that the density is chosen and the velocity is extrapolated from the first fluid
cell. Lateral boundary conditions are also density-imposed boundary conditions.

To prevent outer boundaries from reflecting pressure fluctuations, an absorbing
zone as proposed by Kam et al. [11] is applied. This absorbing zone is implemented
by adding a term aα(x, t) to the distribution function during the collision step

aα(x, t) = −β

(
da
la

)2 (
f (0)
α (x, t)− fa

α(x, t)
)
, (9)

where da is the distance from the inner boundary of the absorbing zone, la is the width
of the absorbing zone and fa

α(x, t) is the equilibrium distribution function computed
from the far field density and velocity. β is chosen to be 0.05 [1].

In the AMROC software, non-Cartesian boundaries are represented on the cell-
based Cartesian mesh by a scalar level set function that stores the distance to the
boundary surface. A fluid cell is treated as an embedded ghost cell if the distance
value in the cell center is negative. For computing signed distance functions from
triangulated surface meshes, a specially designed algorithm [4] is used.

2.5 Wall function modelling

In realistic aerodynamic configurations the flow forms a turbulent boundary layer
around geometries that is very challenging to resolve in numerical simulations. In-
stead, a wall function model is best used to impose the correct wall-near behaviour
as a boundary condition. With y denoting the distance from the wall, uτ the friction
velocity and u the velocity parallel to the wall, the model relates the normalized wall
distance y+ := uτy/ν and the normalized velocity u+ := u/uτ in the logarithmic law
of the wall as u+ = 1

κ
ln y+ + B, with empirically obtained constants κ = 0.41 und

B = 5.3, which is valid for about 30 < y+ < 300. In the viscous sublayer with about
y+ < 5 one finds u+ = y+. Here we use the empirical formula of Musker [12]

u+=5.424 tan−1(0.11976048y+−0.488023952)+0.434 ln

(
(y+10.6)9.6

(y+2 − 8.15y+ + 86)2
− 3.50727902

)
(10)
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that approximates both functions and also includes a smooth transition for the buffer
region with 5 < y+ < 30.

The use as a boundary condition is depicted in two space dimensions in Fig. 1. For
given wall distance yr, the velocity u parallel to the wall is evaluated from the flow

yr

yc

yg

Fluid

Solid
∆x

Ghost cell
Surface
Crit point

Ref point

Figure 1: Wall model construction.

field at the present time step in a refer-
ence point, chosen sufficiently far from the
wall to allow for unperturbed interpolation
from neighbouring lattice points. A Newton
method is then used to numerically determine
from Eq. (10) the unknown value uτ . For a
ghost cell point at distance yg from the wall,
one uses the obtained value uτ , to evaluate
Eq. (10) at yc = −yg to obtain the velocity u′

tangential to the wall that is then imposed in
the ghost cell point as a moving wall boundary condition. The present implementa-
tion further blends the sub-grid scale viscosity νt and a wall function eddy viscosity
approximation νt,y = νκy+(1− exp(−y+/19))2 in the wall-near region and the ghost
cell as

νt =

{
νt,yc , y < yc,

(K2)νt,y + (1−K2)νt , y > yc.
(11)

2.6 DrivAer geometries

The DrivAer models are freely available car geometries developed by the Technical
University of Munich based on the Audi A4 and the BMW 3 series [13]. There are
three types of geometries with differences in the shape at the rear of each model, with
the Notchback and Fastback having a smoother change in geometry compared to the
Estateback. The Estateback is designed for a larger storage capacity in the boot at a
cost of additional drag due to the high slant angle [13]. The geometries include wing
mirrors, separated detailed or simplified wheels and a smooth or complex floor. Here,
the DrivAer models are simulated with a smooth floor, wing mirrors and detailed
wheels with spokes. For all simulations, except those in Section 4.1, full-scale car
geometries with the reference area A0 = 2.16m2 are used.

3 Single car results

3.1 Flow field simulation

Full-scale cars are placed in a virtual wind tunnel of extensions 20m × 12m × 7m.
An inflow velocity in the x-direction of u0 = 16m/s is prescribed. Atmospheric
conditions of air with ρ0 = 1.225 kg/m3 and ν = 1.61·10−5m2/s are applied. Moving
no-slip wall boundary conditions with velocity u0 are applied at the bottom of the
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Figure 2: Mesh level in the domain for the most refined Estateback study.

Figure 3: Mesh across the car geometry at t = 0 (left) and t = 0.04157 s (right). Note
the difference in wheel orientation.

domain, while the wall function boundary conditions of Section 2.5 are applied around
car body and wheels. A level-0 mesh of resolution 200× 120× 70 is used and 2 and
3 additional levels of mesh adaptivity with refinement factor r = 2 are used. For
convergence assessment a refinement factor of r = 4 is also used on the finest level
in computations with up to 3 additional levels, giving a finest resolution of 6.25mm.
Simulations are run until a final time te = 2 s, taking ∼ 2660 instationary time steps
on level 0 and recursively refined steps on higher levels.

Mesh adaptation up to the highest level is based on the geometry. The scaled gradi-
ent of the magnitude of the vorticity vector is utilized to refine the wake behind the car
up to level 2. A typical snapshot of the dynamically created mesh is shown in Fig. 2.
The wheels are set up as rotating with a constant angular velocity corresponding to
a velocity of travel of u0. The AMROC system allows the use of multiple level set
functions and here the static car body is represented with one signed distance function
and the four rotating wheels with another. Adapting the mesh every 10 level-0 time
steps is sufficient to capture the wheel motion. Figure 3 shows the evolving mesh and
also how the spoke orientation of the wheels is changing in time.

In Fig. 4 are shown colour plots of the magnitude of the velocity vector averaged
over the last second of the computation for all three DrivAer car geometries from the
highest resolved computation. In all cases the stagnation point at the front bumper
of the car creates a high compressive load. High pressure regions form also in front
of the wing mirrors. The flow then accelerates over the roof and separates from the
car body for Fastback and Notchback only at the very rear of the boot. In the case of
the Estateback flow separation occurs at the rear window and the wake region behind
the body is accordingly enlarged. The graphics of Fig. 4 clearly display the influence
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Figure 4: Average velocity field in car mid-plane for the three geometries. Fastback
(top), Notchback (middle), Estateback (bottom).

Model 3 levels 4 levels 4 lev, fine Exp TUM Exp PVT
Fastback 0.278 0.267 0.267 0.243 0.240
Notchback 0.282 0.272 0.266 0.246 0.246
Estateback 0.322 0.304 0.325 0.292 0.295

Table 1: Comparison of drag coefficient predictions with wind tunnel experiments.

of the boot geometry on the wake formation. Figure 5 shows the average pressure for
Notchback and Estateback. The Notchback has a region of high pressure at the bottom
of the rear window screen due to the concave corner. This is not the case for the Es-
tateback. The blue regions around the boot of the Estateback model show the regions
of very low pressure and adverse pressure gradients from the sharp convex corners,
which causes the flow to separate at this point and no longer follow the geometry.

3.2 Drag evaluation

At select time steps, the drag force is integrated over the entire car body. In the LBM,
one evaluates 2nd moments of the distribution function and we presently use 1st order
interpolation to project the data from the Cartesian lattice points onto the centre of
gravity of the surface mesh triangles. Since the flow is highly turbulent, it is of vital
importance to use a time-averaged value Fx, in this case over the interval [1, 2] s. The

8



Figure 5: Average pressure at the separation points for the Notchback (left) and Es-
tateback (right) model.

Pressure Viscous
Model CD Body CD Wheels CD Body CD Wheels
Fastback 0.1740 0.0894 4.354E-04 9.051E-06
Notchback 0.1779 0.0875 4.356E-04 9.145E-06
Estateback 0.2400 0.0850 4.237E-04 9.173E-06

Table 2: Breakdown of drag coeffient in body and wheel set.

normalized drag coefficient is then computed as CD =
Fx

1
2
ρ0u2

0A0

.

The drag coefficient predictions using the three different resolution levels are listed
in Table 1. Experimental (Exp) wind tunnel data for comparison are from a study by
the Technical University Munich (TUM) with data from 40% scale models that in-
cluded moving ground and moving wheels with the model mounted on stings [13] and
a study provided by Ford of Europe (PVT), which used full-scale models in the Volvo
wind tunnel. The wheels remained static and the ground was also stationary. The
AMROC-LBM runs over-predict the drag by around 8% (Notchback) to 11% (Estate-
back) compared to the experimental values, however given the moderate resolution
used here and the automatic Cartesian meshing approach, this is still deemed satisfac-
tory. Table 2 details how the fine level-4 values break down into the respective car
body and the four wheels, divided also into pressure drag and viscous contribution,
highlighting the pressure drag dominance.

4 Overtaking simulations

If multiple bodies are in the same flow, their pressure and velocity fields may interact
with each other. This change in pressure and velocity in the flow can cause a change
in the drag over the body. As the lateral distance between two side-by-side bodies
decreases, the drag that the bodies experience increase compared to if they were sep-
arate. This is caused by the acceleration of the flow between the two bodies and a
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Figure 6: Overhead view of overtaking verification setup.

suction force between the two sides facing each other, known as the Venturi effect.
This also results in steeper pressure rises at the rear of the body, creating separation of
flow, and increases the drag. Hence, during an overtaking manoeuvrer the drag coef-
ficients of both cars can vary quite significantly. In this section, we simulate two such
scenarios involving two identical Estateback models, where one vehicle overtakes the
other in adjacent lanes.

4.1 Verification for 25% scale model

To verify the AMROC-LBM solver for multiple moving vehicles, we use a test config-
uration that we simulated previously in an internship project with the moving overset
mesh method in StarCCM+ using the URANS (Unsteady Reynold’s Averaged Navier
Stokes) modelling approach [14]. The case is set up such that the Estateback model
that is initially in front within the domain (Car 1) is static during the simulation with
a freestream velocity of u0 = 50m/s. The initially trailing car (Car 2) is moving
relative to Car 1 with a relative velocity of 10m/s such that it experiences oncoming
flow of 60m/s. The simulation is conducted over a 0.75 s period as Car 2 passes Car
1. This choice of larger freestream velocity compared to Section 3 allows simulation
of a complete overtaking manoeuvrer with considerably fewer time steps. In order to
ensure a similar Reynolds number as in Section 3, the geometries are scaled down to
1/4 size. The used reference area is hence A0/16 = 0.135m2, while other fluid pa-
rameters are as before. Because the wheel motion could not be easily accommodated
in StarCCM+, static wheels are also used in the AMROC-LBM simulation.

A sketch of the setup is given in Fig. 6. Car 1 is initially on the left and Car 2 is
on the right. Distances relative to a vehicle are measured from the geometrical center
of the vehicle and the initial distance is sufficiently large to allow establishment of
separate stable drag values. As before, the flow moves in the positive x-direction and
Car 2 moves in the negative x-direction. The domain of 10m × 4m × 1.8m are
meshed with 200× 80× 36 cells and two additional levels with refinement 2 are used.
This corresponds in resolution directly to the level-3 setup from Section 3. To account
for establishment of a realistic flow field around the bodies, Car 2 is held in its initial
location until t = 0.25 s. Because of this Car 2 overtakes Car 1 at t = 0.465955 s.
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Figure 7: Transient drag coefficients compared to a previous URANS study.

Figure 8: Pressure distributions across Estateback bodies during the overtaking ma-
noeuvrer at t = 0.416031 s (left) and t = 0.5990856 s (right).

This computation required 4417 time step on level 0 and took 31.8 h wall time on 160
cores of 2.0 GHz Intel Skylake processors, i.e., 5092 h CPU.

Figure 7 compares the drag coefficients from AMROC-LBM with the available
URANS data. Although the AMROC-LBM run uses the Estateback model, while the
comparison data used the Fastback model, the differences are small and can be well
explained by the different geometries used. Since it is the only option in StarCCM+
both car’s drag coefficients have been computed for u0 = 50m/s and the slower Car 1
shows initially the lower drag. Car 2 experiences a reduction in drag as it approaches
closer to Car 1. Depicting the pressure on the car surfaces in Fig. 8 shows that at
t = 0.416031 s the lower pressure over Car 2 is skewed towards the side of Car 1,
indicating that Car 2 is in the slipstream region of Car 1.

Figure 7 shows that both cars experience a notably increase in drag when leading
the other car. Car 1’s drag is at a maximum slightly before the cars are parallel and
just afterwards Car 2’s drag is at a maximum. This is also shown in Fig. 8 as Car 1 has
a greater region of low pressure around the region where the boundary layer separates
at t = 0.416031 s compared to t = 0.5990856 s. This creates a larger region where
there is an adverse pressure gradient and hence an earlier separation of the boundary
layer. This induces a larger and more turbulent wake behind the car, increasing its
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Figure 9: Overhead view of full-scale overtaking setup t = 0.

Figure 10: Drag coefficient against time for the body of both models (left) and the
wheels of both cars (right).

drag. Since this effect happens to Car 1 when it is leading Car 2 by a small distance,
it is concluded that the turbulent air, that is pushed around the side Car 2’s body, is
directed towards Car 1 and disturbs the flow over the car reducing the flow velocity in
the x-direction earlier across the roof and the separation region.

4.2 Full-scale configuration

After verifying the AMROC-LBM methodology in the previous sub-section, a full-
scale simulation of two DrivAer Estatebacks is conducted. The inlet flow velocity is
again u0 = 16m/s in the positive x-direction and the relative velocity of the trailing
car is set to 10m/s moving in the negative direction. The rotating wheel motion is
considered for velocities 16m/s and 26m/s, respectively. Figure 9 shows the geo-
metric setup at t = 0 with Car 1 being on the left and Car 2 being on the right. A
domain of 30m× 16m× 7m was discretized with a level-0 mesh of 300× 160× 70
cells and two additional levels with factor of 2 are used, which corresponds to a finest
resolution of 2.5 cm. Approximately 2000 time steps on level 0 were necessary to
reach the final displayed time.

The AMROC-LBM setup uses four level set functions to represent the two car
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Figure 11: Velocity magnitude (left) and pressure (right) during and after the passage.

bodies and the two wheel sets. In contrast to the verification setup of Section 4.1
the relative motion is started at t = 0 and the drag coefficients are calculated with
the respective relative flow velocity of each car. Because of this, and the previously
explained slip stream effect on the trailing car, the drag coefficients on body and wheel
set for Car 2 are actually lower than for Car 1, cf. Fig. 10. Note that shortly before
the overtaking the combined drag coefficient on Car 1 is well in agreement with the
single car result of Table 1. The observed fluctuations in drag coefficient in Fig. 10 of
Car 1 are significantly larger than in Section 4.1, while Car 2 experiences only mild
drag coefficient fluctuations due to its considerable higher velocity u0. Finally, Fig. 11
depicts snapshots of the wake interaction and the pressure fields during the overtaking
manoeuvrer.

5 Conclusions

We have demonstrated that our advanced LBM-LES solver AMROC-LBM is capable
of accurate vehicle aerodynamic computations for realistic moving geometries. As
a final example the overtaking manoeuvre of two DrivAer Estateback cars with ro-
tating wheels with complex spoke geometry is predicted on 160 parallel cores. Key
components of AMROC-LBM for this problem class are, beside dynamically adap-
tive block-structured Cartesian meshing, an advanced lattice-Boltzmann a scheme,
LES modelling with the dynamic Smagorinsky approach and a wall function model to
incorporate the intrinsically turbulent boundary layers around the car geometries.
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Although the contribution is small for this configuration, cf. Table 2, future work
will improve the accuracy of this solver by considering the eddy viscosity modification
of Eq. (11) in the viscous stress evaluation and also allow deactivation of the wall
function model in case of an adverse pressure gradient at the wall.
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