
1 
 

Abstract 
 

The phase field model has gained popularity in recent years as an elegant way to 
model fracture but suffers from issues of solvability and high computational cost. In 
this study, its computational efficiency is improved by extending a domain 
decomposition method that utilises dual partition super elements. This approach 
requires no additional parameters and is easily adaptable with minimal modifications. 
Furthermore, a semi-explicit integration scheme is developed as a robust method for 
tracing the dynamic equilibrium path. It is demonstrated based on the numerical 
example of a single notched plate that combining the semi-explicit scheme with the 
domain decomposition method can achieve significant speed up without a 
compromise in accuracy. 
 

Keywords: brittle fracture, dynamic phase field model, semi-explicit, parallel 
computing, domain decomposition, dual partition super-element 
 

1  Introduction 
 

Accurate modelling of fracture processes, especially considering dynamic conditions, 
is undoubtedly one of most challenging topics in computational solid mechanics. It is 
also crucial when assessing structures under extreme loading, such as blast and 
impact. In recent years, phase field modelling has emerged as a popular numerical 
approach to capture crack initiation and propagation within various materials. The 
model is rooted in the variational principle for discrete fracture proposed in [1], and 
its numerical implementation was firstly established in [2] by employing the 
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Ambrosio-Tortorelli regularisation of sharp discontinuity. This involves an auxiliary 
field of order parameter that can represent distinct states of material (intact or 
fractured) with a smooth transition between the two. Notably, the regularised 
formulation was proved to resemble the gradient damage model [3], and hence the 
order parameter is also commonly interpreted as damage in literature. The phase field 
model possesses many computational merits particularly regarding its 
implementation. This includes exemption of an explicit criterion to track the crack, 
mesh independency and no introduction of any form of discontinuity. A summary of 
phase field model and its various extensions can be found in [4]. 
 

Despite the aforementioned advantages of the phase field model, its numerical 
solvability remains a major issue, prompting a significant research focus on this topic 
in recent years. The reason for this difficulty is two-fold: 1) the non-convexity of the 
energy functional cannot guarantee convergence to the optimum point by 
conventional Newton-Raphson search when the system of equations is solved 
monolithically; and 2) a small element size is typically required to approximate the 
regularised crack profile, which is governed by a length scale much smaller compared 
to the size of the domain, leading to a high computational cost.  
 

The former aspect is commonly addressed with a staggered solver [2] but at the 
cost of excessive iterations. Several nonstandard tracing [5] and optimisation 
techniques [6] have been adopted to improve the efficiency and robustness of search, 
mostly tested with quasi-static analysis. Notably, in most quasi-static benchmark 
numerical examples, the crack is initiated and propagated by prescribing displacement 
at the loaded end. However, there is a general neglect in the research literature that 
crack propagation is associated with snap back, which is typically responsible for the 
lack of convergence rather than the adoption of a monolithic solution procedure. At 
any rate, under this scenario, dynamic analysis would reflect the real response and 
perform better numerically with less convergence issues, as also mentioned in [7]. 
 

Integration schemes for dynamic phase field modelling can be mainly classified 
into fully implicit [8], fully explicit [9] and semi-explicit schemes [10,11,12]. For 
implicit scheme, the equations are temporally integrated without stability limits on the 
time step size. In a fully explicit scheme, an additional micro-viscous term is 
necessary to regularise and add time dependency to the damage evolution equation. 
As no equation solving is involved, its robustness can be guaranteed. However, 
identifying the micro-viscous parameter and the limit on the time step size would be 
a main concern. In the semi-explicit scheme, the displacement field is integrated via 
explicit scheme while the solution for the damage field follows either some external 
box-constrained optimisation tool [10,11] or a standard Newton-Raphson method 
[12]. The semi-explicit scheme avoids the ambiguous definition of the micro-viscous 
parameter and the time step size. In the meantime, the procedure is effectively 
equivalent to a one-pass staggered scheme. 
 

With regards to the second issue, parallel computation has been explored for 
enhancing efficiency. In [9], the capability of graphic processing unit (GPU) 
parallelisation is exploited to accelerate the fully explicit scheme with adaptive time 
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step control, where quasi-linear scaling is reported in their study. In [13], implicit 
phase field modelling is tested with a shared memory system in ABAQUS, which 
reaches optimal efficiency with a relatively limited number of partitions. The 
staggered and monolithic schemes are compared under a parallel computation 
framework in [14], where the system is solved with the Krylov-subspace Conjugate 
Gradient preconditioner as a whole in parallel. Recently, the non-overlapping finite 
element tearing and interconnecting (FETI) method and its constrained version FETI-
DP have been extended to a fully implicit scheme with a staggered solver [7] and a 
semi-explicit scheme [13] respectively.  
 

This paper extends a previously developed domain decomposition technique based 
on dual partition super-elements [15] to phase field modelling and compares the 
performance of the fully implicit and semi-explicit scheme based on the predictor-
corrector concept. The introduced domain decomposition framework does not involve 
any additional dual parameters such as the Lagrangian multiplier used in FETI, and 
hence it can be readily extended to phase field modelling without modification in the 
governing equations. In addition, it has the advantage of being hierarchic and hence 
suitable for hierarchic parallel processing architectures. Furthermore, the approach 
can be employed in joint with mixed-dimensional coupling and different integration 
schemes across partitions which could potentially facilitate fracture analysis of large-
scale structures using phase field modelling. Following the presentation of the phase 
field modelling formulation and its incorporation within domain decomposition a 
numerical example is presented which highlights the relative advantages of the 
various considered techniques. 
 
 

2  Mathematical formulations 
 

2.1 Dynamic phase field model formulation 
 

Consider a deformable continuum body in Euclidean space such that it occupies a 
configuration Ω ∈ ℝ୬ౚౣ , where nୢ୧୫ = {1,2,3} at time t ∈ 𝒯, where 𝒯 is any time 
interval of interest [t, t]. According to the least action principle, the actual system 
configuration must follow the path by minimising the action integral S defined as: 
 

S(𝐮, ϕ) = න ℒ(𝐮, ϕ)
୲

୲బ

dt (1) 

 

where 𝐮(𝐱, t)  denotes the displacement field subject to Dirichlet and Neuman 
boundary conditions such that ∂Ω୳ ∩ ∂Ω୲ = ∅ and ∂Ω୳ ∪ ∂Ω୲ = ∂Ω. ϕ(𝐱, t) ∈ [0,1] 
denotes an auxiliary scalar damage field which is 0 for intact state and 1 for fully 
fractured state with irreversibility constraint ϕ̇ ≥ 0. 
 

With phase field regularisation, the Lagrangian is defined as: 
 

ℒ(𝐮, ϕ) = න
1

2
ρ�̇�. �̇�

ஐ

dΩ − න ψ(𝛆(𝐮), ϕ)
ஐ

dΩ + Wୣ୶୲ − න GୡΓ(ϕ, 𝛁𝛟)
ஐ

dΩ  

 (2) 
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where ρ is the material density, �̇� is the velocity field, ψ is the Helmholtz free energy 
density, 𝛆 = sym(𝛁𝐮) is the infinitesimal strain tensor, Wୣ୶୲  is the external work 
done by surface tractions 𝐭𝐧 and body force 𝐛, Gୡ is the Griffith fracture energy and γ 
is the crack density function. To limit the scope of discussion, the standard AT-2 
model [2] is adopted within an infinitesimal strain setting and spectral split of the 
strain energy. The corresponding crack density function and the free energy density 
expression are given by: 
 

Γ(ϕ, 𝛁𝛟) =
1

2


1

l
ϕଶ + l(𝛁𝛟. 𝛁𝛟)൨ (3) 

 

ψ(𝛆(𝐮), ϕ) = g(ϕ)ℋ(𝛆(𝐮)) + ψୣ
ି(𝛆(𝐮)) (4) 

 

where l  is the internal length scale determining the width of the diffusive crack 
profile, g(ϕ) = (1 − ϕ)ଶ is the quadratic degradation function [2], ℋ(𝛆(𝐮)) is the 
maximum history variable used to enforce crack irreversibility, and ψୣ

ି(𝛆(𝐮)) is the 
undegraded compressive part of the free energy by spectral split: 
 

ℋ(𝛆(𝐮)) = max
୲బஸதஸ୲

ψା(𝛆(𝐮)) (5) 
 

ψ±(𝐮) =
1

2
λ ∙ [〈tr(𝛆)〉±]ଶ + μ 〈ε୧〉±: 〈ε୧〉± (6) 

 

in which λ  and 𝜇  are Lame constants, 〈ε୧〉ା  and 〈ε୧〉ି  contain the positive and 
negative principal strains, respectively. By minimising the action integral, the 
following coupled initial-boundary valued problem (IBVP) is constructed at time t: 
 

−ρ�̈� + div 𝛔 + 𝐛 = 0 (7) 
 

−gᇱ(ϕ)ℋ − Gୡ 
ϕ

𝑙
− lΔ𝜙൨ = 0 (8) 

 

where �̈� is the acceleration field, 𝛔 is the Cauchy stress tensor, Δ is the Laplacian 
operator. Equations (7) and (8) are accompanied with the following boundary 
conditions (assuming no Dirichlet boundary conditions imposed on damage field): 
 

𝛔𝐧 = 𝐭𝐧           on ∂Ω୲ (9) 
 

𝐮 = 𝐮ഥ               on ∂Ω୳ (10) 
 

 𝛁𝛟. 𝐧 = 𝟎        on ∂Ω    (11) 
 

and initial conditions: 
𝐮(𝐱, 0) = 𝐮𝟎(𝐱),   ϕ(𝐱, 0) = ϕ(𝐱) (12) 

 

2.2 Spatial discretisation 
 

By the standard Galerkin finite element method, the domain is discretised with a mesh 
Ω defined by a finite number 𝑛 of nodes. The solution spaces of two primary fields 
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𝐮𝐡  and ϕ୦  are then constructed from the continuous piecewise polynomials 
interpolated at nodal values 𝐮𝐚 and 𝛟𝐚: 
  

𝐮𝐡(x, t) =  𝐍𝐚
𝐮(x)𝐮𝐚(t)

ୟ∈୬

,   ϕ୦(x, t) =  Nୟ
ம(x)ϕୟ(t)

ୟ∈୬

(13) 

 

where 𝐍𝐚
𝐮(x) and Nୟ

ம(x) are the shape function for displacement and damage fields 
associated with node a respectively. Conforming to most studies, their expression is 
assumed to be identical, although employing different shape functions is worth 
investigation. 
  

Substituting the finite element approximation (13) into the weak form of the initial-
boundary valued problem and assembling contributions from all elements through the 
standard procedure eventually leads to the following semi-discretised nonlinear 
system of equations: 
 

𝐌�̈� + 𝐑𝐮(𝐮, 𝛟) = 𝐏𝒖 (14) 
 

𝐑𝛟(𝐮, 𝛟) = 0 (15) 
 

where M is the mass matrix, 𝐑𝐮 and 𝐑𝛟 are internal resistance for displacement and 
damage fields and 𝐏𝐮 is the external force for displacement. For clear presentation, 𝐮 
and 𝛟 now denote the vector containing nodal values with the subscript a dropped 
henceforth, while the viscosity terms can be added easily but ignored here for brevity. 
Note that the resistance corresponding to the damage field is in unit of energy. 
 

2.3 Temporal discretisation 
 

The time interval 𝒯  is discretised into a finite number of time steps 
൛𝑡, … , 𝑡, 𝑡ାଵ, … , 𝑡ൟ . Fields at the nth time step are denoted with subscript n 
hereafter. Given the states at the previous time step {𝐮𝐧, �̇�𝐧, �̈�𝐧, ϕ୬}, the goal of 
integration scheme is to obtain the states at the current step {𝐮𝐧ା𝟏, �̇�𝐧ା𝟏, �̈�𝐧ା𝟏, ϕ୬ାଵ}. 
For a fully implicit scheme, the Hilber-Hughes-Taylor scheme [16] is employed to 
provide high frequency numerical damping. The system of equations (14) and (15) 
are now solved at a time within the step controlled by parameter 𝛼: 
  

𝐌�̈�୬ାଵ + 𝐑𝐮(𝐮𝐧ା𝟏ା𝛂, ϕ𝐧ା𝟏 ) = 𝐏𝒖(𝑡𝐧ା𝟏ା𝛂) (16) 
 

𝐑𝛟(𝐮𝐧ା𝟏ା𝛂, ϕ𝐧ା𝟏) = 0 (17) 
 

where the intermediate state at t𝐧ା𝟏ା𝛂 = t୬ାଵ + αΔt are expressed as 
 

𝐮𝐧ା𝟏ା𝛂 = (1 + 𝛼)𝐮𝐧ା𝟏 − 𝛼𝐮𝐧 (18) 
 

The displacement and velocity at current step follow the standard Newmark 
scheme as: 
 

�̇�୬ାଵ = �̇�୬ + Δt[(1 − γ)�̈�୬ + γ�̈�୬ାଵ] (19) 
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𝐮୬ାଵ = 𝐮୬ + Δt�̇�୬ + Δtଶ[(1/2 − β)�̈�୬ + β�̈�୬ାଵ] (20) 
 

where the two parameters can be linked to α ∈ [−1/3,0]  as γ = 1/2 − α  and 
β = (1 − α)ଶ/4 [16]. Substituting Equations (18), (19) and (20) into (16) and (17) 
enables the equations to be expressed in terms of �̈�୬ାଵ and 𝛟୬ାଵ , hence solvable 
either via the monolithic or staggered solver. In this study the monolithic Newton-
Raphson procedure is employed. For the benchmark numerical example presented in 
Section 4, it is observed that under extremely rapid loading, the monolithic solver 
generally converges well with velocity control. This is because the loading time scale 
becomes more comparable to the crack propagation speed, thus allowing a larger 
displacement increment during unstable crack extension. 
 

The proposed semi-explicit scheme resembles the staggered scheme in [6]. 
Specifically, a prediction of the displacement and velocity field is firstly obtained 
based on frozen states from the previous step. The damage field is then solved via a 
Newton-Raphson procedure with driving energy established based on frozen 
predictors. After convergence is achieved, the corrector is applied with the solved 
damage field. It is assumed that the step size is sufficiently small such that the 
correction of displacement has negligible effect on the damage field. The main 
algorithm is outlined below in Algorithm 1. The limit on the time step size for the 
mechanical problem can be estimated based on the Rayleigh wave speed as a lower 
bound since a degraded stiffness reduces the wave speed under most scenarios, though 
a nonlinear correction factor is still recommended.  

  

Algorithm 1. Semi-explicit phase field model 

Input: 𝐮𝐧, �̇�𝐧, �̈�𝐧, 𝛟𝐧, Δt, γ, β , M 

Output: 𝐮𝐧ା𝟏, �̇�𝐧ା𝟏, �̈�𝐧ା𝟏, 𝛟𝐧ା𝟏 

1. Set tn+1 → tn + Δt 

2. Estimate predictor displacement 𝐮𝐧+𝟏 = 𝐮n + Δt�̇�n + Δt2(1/2 − β)�̈�n 

3. Estimate predictor velocity �̇�෩𝐧+𝟏 = �̇�n + Δt(1 − γ)�̈�n   

4. Set 𝛟𝐧+𝟏
(𝟎) = 𝛟𝐧 and j = 0 

5. Solve damage field via Newton-Raphson procedure: 

    while ቛ𝐑𝛟 ቀ𝐮𝐧+𝟏, 𝛟𝐧+𝟏
(𝐣)

ቁቛ > TOL do 

         Solve 𝚫𝛟𝐧ା𝟏
(𝐣)

= ൬ቂ
𝛛𝐑𝛟

𝛛𝛟
ቃ

(𝐣)

൰
ି𝟏

𝐑𝛟 ቀ𝐮𝐧ା𝟏, 𝛟𝐧ା𝟏
(𝐣)

ቁ 

         Update damage variable  𝛟𝐧+𝟏
(𝐣+𝟏)

= 𝛟𝐧+𝟏
(𝐣) +  𝚫𝛟𝐧+𝟏

(𝐣)  

         Set j → j + 1 

    end while 

    Set ϕ୬ାଵ → ϕ୬ାଵ
(୨)  

6. Calculate corrector displacement by solving 1

Δt2β
𝐌𝚫𝐮 = −𝐑𝐮൫𝐮𝐧+𝟏, 𝛟𝐧+𝟏൯ +

𝐏𝐮, no equation solving is required if lumped mass matrix is used. 
7. Update displacement at current step 𝐮𝐧+𝟏 = 𝐮𝐧+𝟏 + 𝚫𝐮 



7 
 

8. Update acceleration at current step �̈�𝐧+𝟏 =
𝚫𝐮

Δt2β
   

9. Update velocity at current step �̇�𝐧+𝟏 = �̇�෩𝐧+𝟏 + Δtγ�̈�𝐧+𝟏 

10. Set tn → tn+1 and proceed to next step  
 

 
 

3  Domain decomposition based on dual partition super-elements 
 

The domain decomposition developed in [16] utilises dual super-elements which wrap 
around the individual partitions referred to as child partitions. The core of the 
approach is to reduce the size of the global system of equations solved at the higher 
level via packing and unpacking of the information of child partitions through those 
super-elements, while utilising parallel processors to solve for the internal degree of 
freedom (DOF) parameters of the child partitions.  
 

 
 

Figure 1: Domain decomposition based on super partition elements: a) original 
problem; b) partitioning process (dual super elements ignored for partition 2) 

 

Consider the phase field model shown in Figure 1, the overall domain is 
decomposed into two non-overlapping domains Ωଵ and Ωଶ which are defined as child 
partitions. For the kth child partition, all nodes are grouped as either inside the partition 

N୧
(୩)  or on the partition boundary Nୠ

(୩) . Note the nodes on essential and natural 

boundaries defined by the IBVP but outside the partition boundary belong to  N୧
(୩). In 

addition, a parent partition is defined with domain corresponding to the boundary 
intersected by two child partitions, Ω = Ωଵ ∩ Ωଶ. The global governing equations 
are solved at this level via a Newton-Raphson procedure. For each iteration, the 
corrections of DOF parameters are calculated as below, where for brevity, an index 
indicating the current iteration is dropped: 

 

𝐊(୮)Δ𝐝(୮) = −𝐆(୮) (21) 
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where 𝐊, 𝐆, 𝚫𝐝 are the general tangent stiffness, out-of-balance force and iterative 
DOF corrections, and superscript p denotes the parent level. For a fully implicit 
scheme, 𝐝 corresponds to combined displacement and damage freedoms, whereas for 
a semi-explicit scheme, Equation (21) is solved separately for the iterative corrections 
of the displacement and damage parameters. Note the stiffness matrix would 
correspond to lumped mass matrix M for the explicit integration scheme.  
 

To ensure Equation (21) contains information from the overall domain so that it 
can recover the monolithic analysis with a smaller number of DOFs, the tangent 
stiffness and resistance forces should be gathered from individual partitions. To 
achieve this, a super-element (indicated by red line in Figure 1) is defined in the parent 
partition with its dual part (indicated by the blue line for child partition 1 in Figure 1) 
also defined for each corresponding child partition to exchange the necessary data. 
For the scenario considered, the super-element contains nodes on partition boundary.  
 

 At assembly stage, the condensed tangent stiffness and resistance forces for each 
child partition are obtained through forward elimination. The procedure terminates 
when the local system of equations reaches the following structure: 
 


𝐊𝐢𝐢

(𝐤)
𝐊𝐢𝐛

(𝐤)

𝟎 𝐊𝐛𝐛
(𝐤)

൩ ൝
𝚫𝐝𝐢

(𝐤)

𝚫𝐝𝐛
(𝐤)

ൡ = ൝
𝚫𝐑𝐢

(𝐤)

𝚫𝐑𝐛
(𝐤)

ൡ (22) 

 

 This condensation process is performed independently for each child partition, 
hence taking advantage of parallelisation on multiple processors. The condensed 
tangent stiffness and resistance forces are then assembled into the system (21) at 
parent level through communication between child and parent partitions. After the 
current global iteration is completed, the iterative parameter corrections are then 
passed back to each partition. The corrections for parameters at the inner nodes are 
then obtained via back substitution from (22): 
 

𝚫𝐝𝐢
(𝐤)

= ቀ𝐊𝐢𝐢
(𝐤)

ቁ
ି𝟏

ቀ𝚫𝐑𝐢
(𝐤)

− 𝐊𝐢𝐛
(𝐤)

𝚫𝐝𝐛
(𝐤)

ቁ (23) 
 

Again, the procedure is in parallel among all subdomains. Once all freedoms are 
updated, their resistance and tangent stiffness are re-evaluated and assembled into 
parent level system according to the procedure described above for next iteration until 
the global convergence is achieved. Since symmetry of the condensed matrix cannot 
be ensured, direct solvers such as the Multifrontal solver (MUMPS) [18] are adopted 
in this study as opposed to iterative solvers with preconditioners. A parallel version 
of the MUMPs is used for procedures at child level (23) to improve efficiency. For 
explicit integration scheme, the procedure can be significantly simplified as the 
displacement DOF parameters are naturally decoupled with a lumped mass matrix. 
 

 The approach can be adapted to be hierarchical so that it becomes more compatible 
with the hierarchical structure of distributed memory HPC systems to reduce the 
communication cost. More specifically, a nested parent-child structure can be defined 
across multiple levels. For example, domain 1 in Figure 1 can be further divided into 
domains 3 and 4 as shown in Figure 2. The structure shown in green acts partially as 
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local parent partition that gathers information from Ωଷ and Ωସ while at the same time, 
it is treated as a child partition that outputs the further condensed stiffness and 
resistance to the global parent structure indicated in red. 
 

 
 

Figure 2: Hierarchical domain decomposition (dual super elements are not shown). 
 

4  Numerical example 
 

The phase field model has been implemented in the nonlinear finite element analysis 
program ADAPTIC [19]. In this section, a benchmark problem of a single notched 
plate is examined. The problem configuration is shown in Figure 3, where the plate is 
fixed at bottom boundary and subjected to constant velocity of 2000 mm/s with lateral 
restraint at top. The plate thickness is 0.01 mm with out-of-plane movement 
constrained. A pre-existing crack extended to the middle of the plate is used to initiate 
the crack. The material and phase field properties are summarised in Table 1, where 
the values are sourced from references [20] and [11].  
 

 

Figure 3: Notched plate problem. 
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      Material Parameters                                                                  Values[Units] 
      Young’s modulus, E                                                            2.1 × 10ହ [MPa] 
      Poisson ratio, 𝜈                                                                               0.3 [-] 
      Material density, ρ                                                                       8000 [kg/mଷ] 
      Fracture energy, Gୡ                                                                         2.7 [N/mm] 
      Length scale, 𝑙                                                                         0.0075 [mm] 

 

Table 1: Material and phase field parameters. 
 

The problem is discretised with 8-noded linear brick elements, and the mesh is 
refined along the crack path with a minimum element size of 0.002 mm, 
corresponding to a l/h ratio of 3.75. The symmetric monolithic mesh configuration 
is shown in Figure 4, comprising of 27414 nodes and 13600 elements in total. The 
partition pattern is generated by the METIS algorithm embedded in the meshing 
software GMsh [21]. The scenarios under examination are with 4, 8, 16 and 32 
partitions, respectively. An additional scenario based on hierarchical partitioning is 
also considered for the case with 32 subdomains. The four intermediate parent 
domains contain child partitions indicated by similar colour as shown in Figure 4(f). 
 

The considered total time span is 3.5 μs. For fully implicit analysis, 1000 steps are 
considered with adaptive step control, where the step size is automatically reduced by 
factor of 10 when convergence issues are encountered. For semi-explicit analysis, a 
total of 17500 steps with a step size with 2 × 10ିଵ s are used. Figure 5 shows crack 
propagation at different time steps obtained from fully implicit analysis.  
 

 
 

Figure 4: Mesh configuration and partition pattern: a) Monolithic mesh; b) 4 
partitions; c) 8 partitions; d) 16 partitions; e) 32 partitions; f) 32 partitions with 

hierarchical partitioning 
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Figure 5: Crack propagation at time a) 2.765μs; b) 2.905μs; c) 3.045μs; d) 3.185μs. 
 

Figure 6 illustrates the variation of the total force applied with the displacement at 
the top for various scenarios. Initially, the results obtained using a semi-explicit 
scheme are compared with those from a fully implicit scheme, both conducted with a 
monolithic mesh. The descending branch of the response exhibits a more gradual 
slope, attributed to the rapid loading rate. The semi-explicit scheme aligns closely 
with the fully implicit results, albeit with slight discrepancies on the ascending branch. 
These deviations become marginally more pronounced in the post-fracture phase, 
where the two components are completely separated after reaching a displacement of 
0.00637 mm. Subsequently, the monolithic analysis results are compared with those 
derived using domain decomposition. It is observed that the latter approach achieves 
identical accuracy. This maintained level of accuracy is due to the ability of the 
partitioned model to fully replicate the original monolithic model without any loss of 
information via condensation and back substitution. 
 

Figure 7 shows the wall clock time for different scenarios. For fully implicit 
analysis, the partitioning scheme reaches optimal efficiency with 8 subdomains, at 
which a speedup of approximately 2 is achieved. It should be noted that apart from 
the communication overhead, the efficiency of the method also depends on size of 
problem solved at child and parent level. More partitions lead to a reduction in the 
DOFs inside each subdomain but increase the size of the system of equations solved 
at the parent level, and vice versa. The hierarchical partitioning strategy is shown to 
help with improving efficiency with a larger number of partitions. In this case, a 30% 
reduction in computational time is recorded for the case of 32 partitions. For the semi-
explicit scheme, the results demonstrate a greater speedup. The maximum reduction 
in wall clock time reaches 89% for the case of 32 partitions. With this scenario, there 
is a significant reduction in the computing effort at the parent level relative to the child 
partitions, since only the damage DOFs require the solution of simultaneous equations. 
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This means that the procedure can benefit more from increasing partitions compared 
to the fully implicit scheme. Notably, hierarchical partitioning shows a slightly 
deteriorated performance in this case as an additional intermediate layer is defined. 
 

 

Figure 6: Plot of total force versus displacement for comparison between a) fully 
implicit and semi-explicit scheme; b) fully implicit scheme with different number of 

partitions; c) semi-explicit scheme with different number of partitions 
 

 

Figure 7: Computational time for different number of partitions 
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5  Conclusions and Contributions 
 

In this paper, a domain decomposition method is presented to speed up phase field 
model computations. Together with a semi-explicit scheme, the method can achieve 
significant speedup with good speedup and accuracy. Several potential extensions are 
possible, particularly concerning different element dimensions or integration schemes 
across partitions to further reduce computational cost. 
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