
Hybrid Synchronous-Asynchronous Parallel
Computing

G. Gbikpi-Benissan1 and F. Magoulès1,2

1 CentraleSupélec, Paris-Saclay University, Gif-sur-Yvette, France
2 Faculty of Engineering and Information Technology, University

of Pécs, Hungary

Abstract

From the very beginning of parallel numerical computing, its major difficulty con-

sists in achieving highly scaling solvers. This is due to its inherent synchroniza-

tion phases, which are required after each iteration in traditional iterative computing.

Asynchronous iterative computing early arose to overcome such a restriction, which

makes it an attractive approach towards high performance computing. Nevertheless,

asynchronous convergence is guaranteed so far for relaxation methods only, which

do not provide the highest convergence rates in many situations. Efforts to achieve

more competitive asynchronous solvers include their design within domain decompo-

sition frameworks and, recently, with coarse-grid correction. We propose here a new

formulation of asynchronous additive coarse-grid correction, which allows for conver-

gence conditions independent of communications delays. Our approach is based on

a two-splitting formulation of the two-level solver, leading to a hybrid synchronous-

asynchronous method where asynchronous iterations are combined in parallel with

synchronous ones. This possibly paves the way to asynchronous convergence accel-

eration using quite effective relaxation coefficients obtained from synchronized data.

Keywords: parallel computing, domain decomposition methods, Schwarz-type meth-

ods, asynchronous iterations, coarse-grid correction, non-blocking synchronization.

1

Proceedings of the Twelfth International Conference on
Engineering Computational Technology

Edited by: P. Iványi, J. Kruis and B.H.V. Topping
Civil-Comp Conferences, Volume 8, Paper 5.3

Civil-Comp Press, Edinburgh, United Kingdom, 2024
ISSN: 2753-3239, doi: 10.4203/ccc.8.5.3
ÓCivil-Comp Ltd, Edinburgh, UK, 2024

1 Introduction

We address systems of n ∈ N linear algebraic equations,

Ax = b, b ∈ R
n, (1)

where A is a nonsingular real coefficients matrix. Our context is such that A is highly

sparse and large, which makes it more efficient to solve the problem (1) using a par-

allel iterative method. One of the main challenges in parallel iterative computing is to

design highly scaling solvers, which is made difficult by the need for the processes to

synchronize with each other after each iteration. Asynchronous iterative computing

was early introduced to mitigate the issue (see [1,2]), however, their convergence the-

ory is limited to contraction properties of relaxation methods (see, e.g., [2–6]). Efforts

are therefore made to achieve fast-converging asynchronous methods, similarly to the

efforts in accelerating classical relaxation methods, for instance, for fluid-structure

simulations (see, e.g., [7]).

Our interest here is the extension of algebraic multigrid techniques [8] to asyn-

chronous domain decomposition methods (DDM) [9, 10]. Recent notable results in-

clude asynchronous coarse-grid correction schemes developed within domain decom-

position frameworks of either additive Schwarz type (see [11–13]) or primal substruc-

turing type (see [14]). We shall consider an additive Schwarz-type domain decom-

position framework that covers the augmented block Jacobi representation [15] of the

parallel Schwarz method by Lions [16], as well as both the restricted and the weighted

additive Schwarz methods by Cai and Sarkis [17]. Extension to primal substructur-

ing frameworks [18] can be derived as in [14]. An overview of Schwarz-type methods

can be found in [19]. For a comprehensive introduction to DDM, the reader is referred

to [20, 21].

As in [11, 12, 22], we shall consider the additive coarse-grid correction case. The

main drawback of those current asynchronous coarse-grid correction schemes is that

the convergence of the two-level asynchronous solver requires a limited use of the

coarse global information, depending on communications delays. We therefore intro-

duce here a new formulation not requiring any special restriction on the coarse grid in-

corporation. In the next sections, we give the precise Schwarz-type DDM framework

and recall the classical additive coarse-grid correction scheme. Then, we present the

new asynchronous formulation with convergence analysis. Some numerical scaling

results are discussed, and we conclude with some new perspectives enabled by our

approach.

2 Background

Considering the problem (1), let G(A) denote the adjacency graph of A, where the

vertices exactly match the unknowns, and the nonzero coefficients result in the edges.

2

From a partitioning of G(A) (see, e.g., [23]), we consider p ∈ N disjoint sets of

vertices, which can be made overlapping by recursively adding, to each set, all the

vertices at a one-edge distance. Let Ri with i ∈ {1, . . . , p} denote the rectangular

matrix of 0 and 1 such that xi = Rix correspond to the vector of the unknowns on the

i-th set. We define the associated matrix and right-hand-side (RHS) vector,

Ai = RiAR
T

i , bi = Rib, i ∈ {1, . . . , p}. (2)

Note that the matrix Ri is for the mathematical formulation only, and is not explicitly

built in practice. Instead, Ai and bi are directly obtained from selected rows and

columns of A and b. We consider Schwarz-type preconditioners of the form

M =

p
∑

i=1

RT

i WiA
−1
i Ri, (3)

where Wi, i ∈ {1, . . . , p}, is a diagonal matrix such that

p
∑

i=1

RT

i WiRi = I (4)

with I denoting the identity matrix.

Now, as in [20], let R0 denote the rectangular aggregation matrix giving a coarse

version of A as

A0 = R0AR
T

0 . (5)

Each row in R0 contains the coefficients for aggregating the entries of a given vector

to form the corresponding entry of the resulting coarse vector. The coefficients are

usually such that the rows in R0 form a partition of unity. It is common in DDM to

aggregate values on each entire vertices set (or its initial nonoverlapping version) into

one coarse value. Additive coarse-grid correction is then given by a preconditioner of

the form 1/2
(

M +RT

0A
−1
0 R0

)

.

As mentioned above in introduction, we are interested in deriving an asynchronous

variant of two-level Schwarz-type iterative solvers given by

xk+1 = xk +
1

2

(

M +RT

0A
−1
0 R0

) (

b−Axk
)

, k ∈ N, (6)

where k is the iteration number.

3 Method

The starting point of our approach consists in noticing that the iterative model (6) can

actually take the two-splitting form

3

xk+1 =
1

2

(

xk +M
(

b− Axk
))

+
1

2

(

xk +RT

0A
−1
0 R0

(

b− Axk
))

, k ∈ N, (7)

which exhibits the additive combination of one relaxation based on M , and another re-

laxation based on RT

0A
−1
0 R0. Our idea is to consider a hybrid synchronous-asynchronous

approach where the M-based relaxation,

yk := xk +M
(

b−Axk
)

, (8)

will be asynchronous, the RT

0A
−1
0 R0-based relaxation,

zk := xk +RT

0A
−1
0 R0

(

b− Axk
)

, (9)

will remain synchronous, and their weighted sum,

xk+1 =
1

2
yk +

1

2
zk, (10)

will also be asynchronous.

Using the preconditioner form (3) and the partition of unity (4), the relaxation (8)

can take the parallel form

yk :=

p
∑

i=1

RT

i Wi

(

Rix
k + A−1

i Ri

(

b− Axk
))

,

which restriction to each vertices set results in

yki := Ri

p
∑

j=1

RT

j Wj

(

Rjx
k + A−1

j Rj

(

b−Axk
))

, i ∈ {1, . . . , p}. (11)

Note that yki = Riy
k. In asynchronous iterative computing, the solution on each ver-

tices set is updated without necessarily synchronizing with the other sets, therefore,

there is no global iteration in practice. For theoretical purposes, an iteration will con-

sist in the update of the solution on any vertices set. Let then Sk ⊂ {1, . . . , p} give

the vertices sets on which the solution vector is concurrently updated at the iteration

k + 1. Due to communications delays, the relaxation is potentially based on out-

dated versions of the solution vector, instead of its iteration k version. Let τi,j with

i, j ∈ {1, . . . , p} denote a function of k such that τi,j(k) correspond to the iteration

number of the version of the solution vector on the set j from which the set i is up-

dated at the iteration k + 1. The asynchronous formulation of the relaxation (11) is

then given by

yki := Ri

p
∑

j=1

RT

j Wj

(

Rjx
τi,j (k) + A−1

j Rj

(

b− Axτi,j (k)
))

, i ∈ Sk. (12)

4

Similarly, the parallel formulation of the relaxation (9) usually takes the form

zki := Rix
k +RiR

T

0A
−1
0 R0

p
∑

j=1

RT

j WjRj

(

b− Axk
)

, i ∈ {1, . . . , p}, (13)

which exhibits two communications points through R0R
T

j and RiR
T

0 , respectively.

Based on the asynchronous model (12), communications delays therefore imply

zki := Rix
τ
i,i

(k) +RiR
T

0A
−1
0 R0

p
∑

j=1

RT

j WjRj

(

b− Axτ
0,j

(τ
i,0

(k))
)

, i ∈ Sk,

where the functions τ0,j and τi,0 are associated to the two communications points

R0R
T

j and RiR
T

0 mentioned above. To perform the synchronous relaxation (13) in

the globally asynchronous context, we consider a delay function, say τ0, that is inde-

pendent of the variables i and j. This results in

zki := Rix
τ
0
(k) +RiR

T

0A
−1
0 R0

p
∑

j=1

RT

j WjRj

(

b−Axτ
0
(k)
)

, i ∈ Sk. (14)

Finally, the restriction of the sum (10) to each vertices set takes the asynchronous

parallel form

xk+1
i =

{ 1

2
y
τ
i,i

(k)

i +
1

2
z
τ
i,i

(k)

i , i ∈ Sk,

xk
i , i ∈ {1, . . . , p} \ Sk.

(15)

For convergence analysis, we shall highlight three natural assumptions. First, access

to data on the i-th vertices set, i ∈ {1, . . . , p}, for updating the i-th vertices set is

instantaneous. Second, no set definitively stops being updated (before global conver-

gence is notified), and third, no set definitively stops being accessed for updated data,

for updating any other set. Those assumptions can be formulated as

τi,i(k) = k, |{k : i ∈ Sk}| = ∞, lim
k→∞

τi,j(k) = ∞, lim
k→∞

τ0(k) = ∞. (16)

Let an M-matrix denote a nonsingular matrix with no positive off-diagonal entry,

and which inverse is nonnegative. We have the following convergence result similar

to [12] but not requiring to alternate between one-level and two-level iterations.

Theorem 1. Under the assumptions (16), the two-level Schwarz-type asynchronous

iterations (12), (14), (15) converge to the solution of the problem (1) if A is an M-

matrix, A0 is an M-matrix, and I − RT

0A
−1
0 R0A ≥ 0.

5

Proof. Using the partition of unity (4) and the assumption that τi,i(k) = k, the model

(12), (14), (15) results, for i ∈ Sk, in

xk+1
i =

1

2
Ri

p
∑

j=1

RT

j Wj

(

Rjx
τ
i,j

(k) + A−1
j Rj

(

b− Axτ
i,j

(k)
))

+
1

2
Ri

(

xτ
0
(k) +RT

0A
−1
0 R0

(

b− Axτ
0
(k)
))

=
1

2
Ri

p
∑

j=1

RT

j WjRj

(

xτ
i,j

(k) + RT

j A
−1
j Rj

(

b−Axτ
i,j

(k)
))

+
1

2
Ri

(

xτ
0
(k) +RT

0A
−1
0 R0

(

b− Axτ
0
(k)
))

.

Following, e.g., [24], matricesM−1
i with i ∈ {1, . . . , p} can be derived from RT

i A
−1
i Ri

such that

M =

p
∑

i=1

EiM
−1
i , Ei = RT

i WiRi. (17)

Then, we equivalently have

xk+1
i =

1

2
Ri

p
∑

j=1

Ej

(

xτi,j(k) +M−1
j

(

b−Axτi,j (k)
))

+
1

2
Ri

(

xτ
0
(k) +RT

0A
−1
0 R0

(

b− Axτ
0
(k)
))

= RiF
(

xτ
i,1

(k), . . . , xτ
i,p

(k), xτ
0
(k)
)

with, for any X1, . . . , Xp, X0 ∈ R
n,

F
(

X1, . . . , Xp, X0

)

=
1

2

(

F1

(

X1, . . . , Xp

)

+ F2 (X0)
)

,

F1

(

X1, . . . , Xp

)

=

p
∑

i=1

Ei

(

Xi +M−1
i (b−AXi)

)

,

F2 (X0) = X0 +RT

0A
−1
0 R0 (b− AX0) .

It follows that, for any X =
(

X1, . . . , Xp, X0

)

T

and Y =
(

Y1, . . . , Yp, Y0

)

T

with

X1, . . . , Xp, X0 ∈ R
n and Y1, . . . , Yp, Y0 ∈ R

n, we have

|F (X)− F (Y)| ≤ T
p

max
i=0

(|Xi − Yi|)

with

T =
1

2

(

p
∑

i=1

Ei

∣

∣I −M−1
i A

∣

∣+
∣

∣I − RT

0A
−1
0 R0A

∣

∣

)

,

6

and where the operator max(x, y) gives the vector which each entry is the maximum

between the corresponding entries in x and y.

If A is an M-matrix, then I −M−1
i A ≥ 0 for any i ∈ {1, . . . , p} (see, e.g., Proof of

Theorem 4.4 in [25]), therefore, with I −RT

0A
−1
0 R0A ≥ 0 and the multisplitting form

(17), we have

T = I −
1

2

(

M +RT

0A
−1
0 R0

)

A.

If, additionally, A0 is an M-matrix, then we have RT

0A
−1
0 R0 ≥ 0 and hence, by The-

orem 4.3 of [25], ρ(T) < 1. It follows that, by Lemma 3.1 of [26], the contraction

condition for convergence in Theorem 2 of [3] is satisfied for the global iteration map-

ping, which concludes the proof.

For some possible constructions of R0 so as to satisfy the conditions in Theorem 1,

see, e.g., [12] and references therein. The asynchronous iterations (12), (14), (15) can

be readily implemented following any of the approaches [27–30]. In particular, the

implementation of the special formulation (14) can actually be derived from Algo-

rithm 3 of [22] with no effort. The only, but key, difference here is that the solution

vector which is corrected is the one from which the RHS of the coarse problem was

assembled.

4 Results

In view of a comparison with [12, 22], we shall illustrate the validity of our approach

by considering the Poisson’s equation,

−∆u = g, (18)

where the unknown solution, u, was defined on a three-dimensional domain [0, 1] ×
[0, 1]×[0, 0.2], and the source term, g = 918, was an arbitrary constant. A solution u =
0 was prescribed on the boundaries ∂[0, 1]×[0, 1]×[0, 0.2] and [0, 1]×∂[0, 1]×[0, 0.2].
Each interval of the domain was partitioned such that a discrete overlap of two mesh

steps was obtained. The problem (18) was approximated on each subdomain using the

P1 finite elements method, which generated the matrices RiA (the nonzero columns)

and vectors Rib, i ∈ {1, . . . , p}. Note that Ai is included in RiA. The global number

of unknowns was n = 174 × 174 × 36 = 1, 089, 936. The aggregation mapping R0

was of the form

R0 =

[

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

]

,

which is a two subdomains example. Cholesky factorization was applied to Ai, i ∈
{1, . . . , p}, and A0.

7

The compute platform was a homogeneous cluster of 40 nodes interconnected by

a 100 Gb/s Omni-Path Architecture (OPA) network device. Each compute node was

provided with 175 GB of memory and two 2.1 GHz processors with 20 cores (40

cores per node). A standard Message Passage Interface (MPI) library was used for the

communications. Each core was mapped to one MPI process, and each MPI process

was mapped to one subdomain, and vice versa. The coarse problem was solved on the

MPI process of rank 0.

In the following, we show the performance scaling of the two-level Schwarz-type

solver (6) (referred to as “Sync”), its asynchronous variants “GBCRR” [11] (initials of

the authors) and “GM” [22], and the hybrid synchronous-asynchronous variant (12),

(14), (15) (“Sync/Async”). The entries of the weighting matrices Wi in (3) were set to

1 or 0 only, so as to have M resulting in the restricted additive Schwarz preconditioner

[17]. Overall execution times are compared for a stopping criterion ‖b−Ax‖ < ε‖b‖
with ε = 10−6. In the asynchronous cases, convergence is detected using non-blocking

exact global residual computation, as described in Listing 5 of [29].

In [11,12], two-level iteration was performed only when a new coarse solution was

computed. In the meantime, one-level iterations had to be considered. In [22], several

two-level iterations could be performed as long as the gap between the fine and the

coarse solutions was within a certain delay interval. We shall therefore consider a

parameter, say δ, which corresponds to the maximum number of two-level iterations

allowed using the same coarse solution. Table 1 and Figure 1 show the performance

of the solvers for an increasing number of processor cores, p ∈ {5 × 5 × 1, 5 × 5 ×
2, 10× 5× 2, 10× 10× 2, 10× 10× 4, 20× 10× 4}.

p

25

50

100

200

400

800

Sync

Eq. (6)

33

20

11

8

11

27

Async, δ = 1

GBCRR [11]

44

29

15

8

8

7

Async, δ = 5

GM [22]

34

19

8

3

3

3

Sync/Async, δ = ∞
Eq. (12), (14), (15)

85

47

23

12

12

17

p

25

50

100

200

400

800

Async, δ = 1

GM [22]

47

31

17

10

8

7

Async, δ = ∞
GM [22]

34

20

8

3

49

diverged

Sync/Async, δ = 1

Eq. (12), (14), (15)

65

41

22

13

11

11

Sync/Async, δ = 5

Eq. (12), (14), (15)

85

48

23

12

12

11

Table 1: Solvers elapsed time in seconds. The parameter δ is the maximum number of

two-level iterations per coarse solution.

8

0 200 400 600 800
p

2000

4000

6000

8000

10000

∑
 k

i /
 p

Sync
GBCRR (async, δ=1)
GM (async, δ=5)
Sync/Async, δ=∞

0 200 400 600 800
p

0

10

20

30

40

50

El
ap

se
d

 im
e

(s
ec

)

Sync
GBCRR (async, δ=1)
GM (async, δ=5)
Sync/Async, δ=∞

0 200 400 600 800
p

0

2000

4000

6000

8000

10000

∑
 k

i /
 p

GM (async, δ=1)
GM (async, δ=∞)
Sync/Async, δ=1
Sync/Async, δ=5

0 200 400 600 800
p

0

10

20

30

40

50

El
ap

se
d
tim

e
(s
ec
)

GM (async, δ=1)
GM (async, δ=∞)
Sync/Async, δ=1
Sync/Async, δ=5

Figure 1: Solvers elapsed time in seconds and average number of iterations (ki with

i ∈ {1, . . . , p}, is the number of iterations on the i-th subdomain), for num-

bers of processor cores p ∈ {25, 50, 100, 200, 400, 800}. The parameter δ is

the maximum number of two-level iterations per coarse solution.

5 Conclusions

The development of competitive asynchronous iterative solvers is still at an early

stage, however, promising results were achieved through the development of two-level

asynchronous domain decomposition methods within both additive Schwarz and pri-

mal substructuring frameworks. In this paper, we focused on a new formulation that

allows for convergence conditions independent of communications delays. But more

importantly, by combining synchronous and asynchronous iterations, this formulation

revealed a new exciting perspective. It hopefully suggests the possibility to accel-

erate asynchronous iterations using highly effective relaxation coefficients computed

from synchronized data. However, a difficulty already appears here from the numer-

ical experiments since, while guaranteeing convergence independently of communi-

cations delays, the performance of the hybrid synchronous-asynchronous two-level

solver seems to have been hindered by the negative impact of those delays on its syn-

chronous part. Efforts should probably now be directed to more efficient combinations

of synchronous and asynchronous iterations.

9

References

[1] J.L. Rosenfeld, “A Case Study in Programming for Parallel-Processors”, Com-

mun. ACM, 12(12): 645–655, 1969.

[2] D. Chazan, W. Miranker, “Chaotic Relaxation”, Linear Algebra Appl., 2(2):

199–222, 1969.

[3] G.M. Baudet, “Asynchronous Iterative Methods for Multiprocessors”, J. ACM,

25(2): 226–244, 1978.

[4] D.P. Bertsekas, “Distributed asynchronous computation of fixed points”, Math.

Program., 27(1): 107–120, 1983.

[5] A. Frommer, D.B. Szyld, “On asynchronous iterations”, J. Comput. Appl. Math.,

123(1–2): 201–216, 2000.

[6] P. Spiteri, “Parallel asynchronous algorithms: A survey”, Adv. Eng. Softw., 149:

102896, 2020.

[7] U. Küttler, W.A. Wall, “Fixed-point fluid-structure interaction solvers with dy-

namic relaxation”, Comput. Mech., 43(1): 61–72, 2008.

[8] K. Stüben, “Algebraic multigrid (AMG): experiences and comparisons”, Appl.

Math. Comput., 13(3): 419–451, 1983.

[9] D. Evans, W. Deren, “An asynchronous parallel algorithm for solving a class of

nonlinear simultaneous equations”, Parallel Comput., 17(2): 165–180, 1991.

[10] A. Frommer, H. Schwandt, D.B. Szyld, “Asynchronous Weighted Additive

Schwarz Methods”, Electron. Trans. Numer. Anal., 5: 48–61, 1997.

[11] C. Glusa, E.G. Boman, E. Chow, S. Rajamanickam, P. Ramanan, “Asynchronous

One-Level and Two-Level Domain Decomposition Solvers”, in R. Haynes,

S. MacLachlan, X.C. Cai, L. Halpern, H.H. Kim, A. Klawonn, O. Widlund (Ed-

itors), Domain Decomposition Methods in Science and Engineering XXV, pages

134–142. Springer International Publishing, Cham, Switzerland, 2020.

[12] C. Glusa, E.G. Boman, E. Chow, S. Rajamanickam, D.B. Szyld, “Scalable Asyn-

chronous Domain Decomposition Solvers”, SIAM J. Sci. Comput., 42(6): C384–

C409, 2020.

[13] G. Gbikpi-Benissan, F. Magoulès, “Asynchronous Multiplicative Coarse-Space

Correction”, SIAM J. Sci. Comput., 44(3): C237–C259, 2022.

[14] G. Gbikpi-Benissan, F. Magoulès, “Asynchronous multisplitting-based primal

Schur method”, J. Comput. Appl. Math., 425: 115060, 2023.

10

[15] D.J. Evans, S. Jianping, K. Lishan, “The convergence factor of the parallel

Schwarz overrelaxation method for linear systems”, Parallel Comput., 6(3):

313–324, 1988.

[16] P.L. Lions, “On the Schwarz Alternating Method. I”, in R. Glowinski,

G.H. Golub, G.A. Meurant, J. Périaux (Editors), First International Symposium

on Domain Decomposition Methods for Partial Differential Equations, pages 1–

42. SIAM, Philadelphia, PA, USA, 1988.

[17] X.C. Cai, M. Sarkis, “A Restricted Additive Schwarz Preconditioner for General

Sparse Linear Systems”, SIAM J. Sci. Comput., 21(2): 792–797, 1999.

[18] J.S. Przemieniecki, “Matrix structural analysis of substructures”, AIAA Journal,

1(1): 138–147, 1963.

[19] M.J. Gander, “Schwarz methods over the course of time”, Electron. Trans.

Numer. Anal., 31: 228–255, 2008.

[20] A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and The-

ory, Volume 34 of Springer Series in Computational Mathematics, Springer-

Verlag Berlin Heidelberg, 2005, page 450.

[21] V. Dolean, P. Jolivet, F. Nataf, An Introduction to Domain Decomposition Meth-

ods – Algorithms, Theory, and Parallel Implementation, SIAM, Philadelphia,

PA, USA, 2015, pages IX, 233.

[22] G. Gbikpi-Benissan, F. Magoulès, “Accurate coarse residual for two-level

asynchronous domain decomposition methods”, in P. Iványi, F. Magoulès,

B.H.V. Topping (Editors), Proceedings of the Seventh International Confer-

ence on Parallel, Distributed, GPU and Cloud Computing for Engineer-

ing, Volume CCC 4. Civil-Comp Press, Edinburgh, UK, 2023, Paper 1.1,

doi:10.4203/ccc.4.1.1.

[23] G. Karypis, V. Kumar, “Multilevel k-way Partitioning Scheme for Irregular

Graphs”, J. Parallel Distrib. Comput., 48(1): 96–129, 1998.

[24] A. Frommer, D.B. Szyld, “Weighted max norms, splittings, and overlapping

additive Schwarz iterations”, Numer. Math., 83(2): 259–278, 1999.

[25] A. Frommer, D.B. Szyld, “An Algebraic Convergence Theory for Restricted

Additive Schwarz Methods Using Weighted Max Norms”, SIAM J. Numer. Anal.,

39(2): 463–479, 2001.

[26] G. Gbikpi-Benissan, F. Magoulès, “Resilient asynchronous primal Schur

method”, Appl. Math., 67: 679–704, 2022.

[27] M. Chau, D. El Baz, R. Guivarch, P. Spiteri, “MPI implementation of parallel

subdomain methods for linear and nonlinear convection-diffusion problems”, J.

Parallel Distrib. Comput., 67(5): 581–591, 2007.

11

[28] J. Wolfson-Pou, E. Chow, “Reducing Communication in Distributed Asyn-

chronous Iterative Methods”, Procedia Computer Science, 80: 1906–1916,

2016.

[29] F. Magoulès, G. Gbikpi-Benissan, “JACK2: An MPI-based communication li-

brary with non-blocking synchronization for asynchronous iterations”, Adv. Eng.

Softw., 119: 116–133, 2018.

[30] I. Yamazaki, E. Chow, A. Bouteiller, J. Dongarra, “Performance of asynchronous

optimized Schwarz with one-sided communication”, Parallel Comput., 86: 66–

81, 2019.

12

