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Abstract

The introduction of new technologies in the industry makes possible to develop new
functionalities in production lines, but it requires to solve some challenges in several
areas. One of these challenges is the hardware and software design of the computa-
tional system, taking into account both the time requirements of the industrial system
and the economic requirements. In the field of sorting and collecting pieces of dif-
ferent composition but with similar appearance, hyperspectral cameras have recently
been introduced in the industry. They provide more information than conventional vi-
sion cameras, but it must be transmitted, pre-processed and analysed depending on the
final application of the system. Obviously, the computing cost increases as the volume
of data to be processed does. The system’s computing power must be increased if it
is unable to process all the information in real time. Distributed software architec-
tures must therefore be designed to efficiently use the computational power of parallel
computing systems, since computational power increases primarily by the number of
processing elements increment rather than by increasing the power of each processing
element itself. In this paper we present a software architecture design that distributes
heterogeneous work and accelerates computationally expensive processes to meet the
industrial system time requirements.
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1 Introduction and motivation

Currently, there is a growing concern in different productive sectors about environ-
mental sustainability, which is driving the change towards what has been called the
circular economy. At the heart of this transformation is the problem of the waste ac-
cumulation in the environment of many types of materials such as plastic, textile, etc.,
posing as a challenge the demand for innovative solutions for effective waste recovery
and reuse.

Waste separation and sorting is an essential step prior to its elimination, since waste
such as plastics, paper, rubber, bottles, glass, etc. can be valorized by having an added
value through recycling. Different techniques and technologies are used for waste
separation and sorting such as magnetic separation, air separation, screening systems,
X-ray, induction sorting system, colour sorting technology, thermal imaging, vision-
based classification methods, etc.

Recently, classification methods based on digital images of municipal waste, as the
ones presented in [1–7], use the images of the objects to perform their classification by
means of some specific algorithm. However, for an effective recycling, it is necessary
to separate the waste according to its chemical composition, so that the different sets
of waste are as pure as possible. When litter of different chemical composition has
similar morphological and visual characteristics, algorithms based on visual digital
images are unable to distinguish between these different materials. Among the image
based algorithms used to discriminate products, the most advanced ones are those
based on artificial intelligence (AI) models. These AI models must be trained for a
specific set of products, but any change in the format, texture, colour, or shape of the
waste objects may require a new training process. Besides, if this training process is
based on digital images in the visible spectrum, AI based methods will also not be
able to distinguish between similar objects with different chemical compositions.

Sorting waste according to its chemical composition requires more information
than traditional vision cameras can provide. However, thanks to the advances in mul-
tispectral and hyperspectral technology, today it is possible to integrate these sensors
into industrial production lines like waste classification and sorting processing lines.

A multispectral or hyperspectral image (HSI) can be considered as a huge three
dimensional data cube (usually called hypercube) with two spatial dimensions (width
and height), and one spectral dimension (depth). For each value in the spectral dimen-
sion (wavelength), we have a 2D image of the scene captured by the spectral sensor.
This image corresponds to the spectral information obtained only at the correspond-
ing wavelength. A conventional video image (visible spectrum) follows the same data
structure, but the depth is fixed to 3, which corresponds to the red, green and blue
(RGB) channels, while a multispectral or hyperspectral sensor generates hypercubes
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with a depth of several tens or hundreds channels, respectively.
Given that our objective is the design of a hardware and software infrastructure for

the implementation of an industrial line for the separation of waste based on its chem-
ical composition, we decided to work with hyperspectral sensors, which produce a
huge amount of information that needs to be transmitted, pre-processed and analysed.
In this work we will focus on the design of the industrial system in general and in the
computational system in particular allowing to perform all these tasks in real time.

This work is not focused on the specific processing algorithms to detect different
chemical compositions based on the collected hyperspectral information, but rather
on the infrastructure design that allows us the maximum possible computation time to
execute high complexity detection algorithms in real time, i.e the time requirements
that makes the industrial system economically profitable.

The physical conditions of the acquisition system (conveyor belt speeds, lighting
system, environmental characteristics, etc.) as well as the type of sensor used (spatial
and spectral resolution and capturing frequency) affect to the quality of the collected
data. Depending on the quality of the data, a more or less sophisticated pre-processing
step must be included before the classification algorithm. Therefore, a good industrial
design will produce data with less noise, allowing a simple pre-processing step which
will permit the use of more complex and accurate classification algorithms.

Building a modular system or software which allows the modification or incorpora-
tion of different pre-processing, detection or sorting algorithms with the least possible
impact on the final system is an important challenge. The idea is to obtain a modular
system design that can be used in several recycling plants, being able to adapt to the
different physical parameters of the industrial plant configuration. The computer sys-
tem must manage the classification algorithms as well as the hyperspectral sensor, the
conveyors, the lighting systems, the operation and alarm sensors, the robotic picking
arms, etc.

The present work is mainly focused on the analysis of the feasibility of a robotic
system for recycling, proposing a modular software system. This software uses the
computer system efficiently to apply different classification and segmentation algo-
rithms, introduced as modules, to treat different materials together. The design of the
software is therefore independent of the nature of the materials to be classified and
sorted and also of the way in which the pick and place tasks are carried out, either by
clamping, blowing or any other technology.

One of the goals is to minimize the cost of the computational infrastructure. We
will use a conventional multi-core architecture on which we will distribute the hetero-
geneous work (sensor data acquisition, classification, segmentation, communication
with other systems, etc.) and we will dimension it so that there are sufficient compu-
tational resources to apply acceleration techniques in the processes that require them.
The sorting algorithm itself is beyond the scope of this work. However, the company
JOVISA S.L. asked us for a system to classify plastic and cardboard. Due to the nature
of the spectra of both materials, we propose an analytical solution with a low compu-
tational cost and an accuracy close to 100%. Although the classification of other
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types of materials may require more complex classification algorithms, the proposed
software architecture has been designed in such a way that there is sufficient time to
perform these more complex algorithms. Thanks to this software architecture design,
the hardware requirements of the system will be able to adapt to the computational
demands of the sorting algorithm.

The rest of the paper is structured as follows: Section 2 provides an introduction
to hyperspectral image processing. Section 3 shows, firstly, the main characteristics
of the industrial prototype used from a hardware point of view (Section 3.1), and
secondly, Section 3.2 shows the developed software architecture that allows the system
to be versatile and scalable from a software and hardware point of view. Finally, in
Section 4, we present some numerical results and draw some conclusions.

2 Introduction to the hyperspectral imaging

Hyperspectral or HSI technology has been widely used in remote sensing [8] [9]. In
particular, there are several satellites that provide hyperspectral images for Earth ob-
servation, such as SPOT 6, RapidEye, Pleiade, Sentinel 2, or Landsat 8. These sensors
provide multispectral information of the Earth’s surface with low spatial resolution (10
meters for Sentinel 2) and very low imaging frequency (5 days in Sentinel 2 for the
same location). Sensors of this type are also installed in aircraft or drones to inspect
sensitive areas.

Currently, there are hyperspectral sensors designed for industrial applications that
do not differ in their basic operation, but are intended for their use at short distances
and for the analysis at a higher spatial resolution (millimetres rather than meters).

These hyperspectral cameras are characterized by their spectral resolution, i.e. the
number of wavelength bands per pixel, and their maximum operating frequency or
frames per second (fps). In addition, these cameras are line cameras, i.e. their spatial
resolution is Npx x 1, where Npx is the number of pixels per line provided by the
camera. The pixel size width will depend on the spatial resolution of the hyperspectral
camera, the optical lens angle, and the distance from the camera to the objects to be
scanned. Once these parameters have been fixed, the capturing frequency must be
adapted so that we get a squared pixel.

The choice of hyperspectral camera model depends on the size of the materials to
be classified, which determines the camera pixel resolution, and the material compo-
sition, which determines the minimum spectral resolution.

3 Proposed system

After confirming the feasibility of the classification of different materials using HSI
techniques under laboratory conditions, we detected some obstacles that hinder the
implementation of these systems in a real industrial environment. We saw after an
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initial analysis of the computing times of the processes involved in the industrial clas-
sification and recycling system, that the laboratory prototype was not viable as it was
planned. The huge amount of data received from the hyperspectral sensor needs to
be pre-processed and then analysed according to the final system requirements, and
thus, a proper industrial design will significantly reduce the computational cost of
pre-processing associated with noise removal.

In this section, we will first describe the industrial system from a hardware point
of view and then we will analyse it from a software point of view in order to iden-
tify the main functionalities and the main challenges to be addressed. Subsequently,
the developed multi-level parallel software architecture will be described in detail in
Section 3.2, showing the feasibility of the system.

The aim of our proposal is not to develop a closed system for sorting a limited
number of materials, but on the contrary, our development should be able to run as a
stand-alone system as well as being adaptable to existing processing lines. Our pro-
posal is a scalable system, i.e. it can be adapted to processing lines with different
workloads, being the main objective that the multi-level parallel software does not re-
quire relevant adaptations and/or modifications. Obviously, depending on the number
and type of materials to be sorted, the software module in charge of sorting will have
to be modified.

3.1 Hardware system

The hardware system of the developed prototype production line (Figure 1) consists
in a first approximation of four basic parts:

• System for transporting the material to be sorted.

• HSI acquisition system.

• Material retrieval and sorting system.

• Computer system, including communication networks.

The system that collects and transports the material to be sorted, is essentially made
up of the conveyor belts needed to transport the material to be sorted to the HSI ac-
quisition system. As in any industrial system with these characteristics, these con-
veyors must be managed by intelligent systems with communication capabilities, so
that they can be remotely controlled. Programmable Logic Controllers (PLCs) with
TCP/IP communication capabilities have been used in all systems that require central-
ized control, such as conveyor belts, lighting system and refrigeration system, among
others

Obviously, the goal is to speed-up the conveyor belt as much as possible while
maintaining an accurate classification of the different materials as well as allowing
an effective pick and place process. However, this speed is limited not only by the
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Figure 1: Prototype production line.

technology or characteristics of the conveyor, but also by the characteristics of the
material, and by the type of the robotic system used for the pick and place process,
depending on whether it is a collaborative environment or not. In addition, it must be
taken into account that if the speed is too low, the system will not be economically
viable, and if the speed is too high, depending on the morphology of the objects, they
may move on the belt due to air friction, causing errors in the robotic arms responsible
for picking them.

The HSI acquisition system is a key part of the proposed system, both at the level of
resolution and spectral characteristics of the multispectral camera used, but also, and
not least, with respect to the design of the physical structure of the camera installation,
lighting system, and thermal conditioning. As previously said, the resolution of the
camera together with the mounting distance, affects the physical equivalent size of
each pixel captured, whereas the required spectral resolution is determined by the
chemical characteristics of the different materials to be classified.

As mentioned above, multispectral cameras are line cameras, not frame cameras.
This means that they do not provide images in two dimensions, but rather spectral in-
formation, usually several hundred frequencies for a single line of pixels. Therefore,
the physical dimension corresponding to a pixel depends on the distance of the camera
installation with respect to the conveyor that transports the material, and on the fre-
quency operation of the camera that must be adjusted with respect to the speed of the
conveyor belt. In order to obtain realistic dimensions of the shape of the objects, it is
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necessary to work with square pixels, which requires a fine tuning between the camera
acquisition speed, the conveyor speed, and the camera installation height. Therefore,
a compromise has to be found between the conveyor speed and the multispectral cam-
era installation height, taking into account the spatial resolution of the multispectral
sensor.

Although these multispectral cameras have been designed for industrial environ-
ments, they are not immune to both radiated and conducted noise sources. As men-
tioned above, one of the objectives is to have systems that can operate within the strict
time requirements. These requirements are given by the industrial infrastructure (con-
veyor belt speed, conveyor belt width, number of picking and sorting robots, robot
operating speed,etc.), but also by the computational cost of the different processes
(pre-process, classification and segmentation) to be executed. The more immune the
system is to noise sources, the less pre-processing or conditioning is required for the
signal acquired by the multispectral camera, thus helping to meet the timing require-
ments of the overall system.

Multispectral cameras capture the electromagnetic signal reflected from an object
in a broad frequency spectrum, just as conventional vision cameras reflect the electro-
magnetic signal in the visible spectrum. Logically, in order to obtain this reflection
signal, first it must be emitted toward the object. In order to design a robust and low-
cost system, we propose the use of low-cost emitting sources, being halogen emitters
that emit both in the visible spectrum and in the non-visible spectra close to the visible
spectrum, such as the near infrared (NIR), our choice.

One option to avoid radiated noise sources, such as sunlight, other light sources in
the industrial environment, or radiated electromagnetic noise, would be to encapsu-
late the system in a dark chamber where no electromagnetic signal can enter, a solu-
tion adopted in other systems, such as PICVISA’s commercial product with reference
Ecopick1. However, this solution prevents us from achieving several of our objectives,
such as having a scalable, versatile and low-cost system. Our proposal requires only
that there be no direct sunlight, which is easily achievable; the harmful effects of the
rest of the noise are treated computationally.

Conducted noise sources are all sources of vibration that can affect the operation
of the multispectral camera. These cameras are not immune to vibration, in the case
of the model used in this project, one of the effects of vibration is the loss of infor-
mation. If this loss of information is sporadic, it is easily solved by computational
means, but if the loss is more intensive, it causes unwanted computational overhead
and possible errors in objects detection. Therefore, a camera anchoring system has
been designed that must first be decoupled (with as little physical contact as possible)
from the sources of vibration, i.e. conveyor belts and robotic systems. To minimise
this noise, the camera was installed with vibration mounts. These mounts isolate the
camera from the vibrations of the rest of the system. In addition, the camera requires
a thermal conditioning system through fans installed in such a way that they do not

1https://picvisa.com/ecopick-robot-inteligencia-artificial\
-clasificacion-materiales-residuos/
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transmit vibrations to the hyperspectral camera.
The material recovery and sorting system is the most conventional part of the sys-

tem, it does not require any specifications different from the conventional systems
based on conveyors controlled by PLC and robotic arms, the robots use suction to
pick up parts in our prototype. The only aspect to take into account is that in order
to homogenize the signal reflected by the belt, i.e. when there is no material, it is
necessary to automatically clean the belt periodically.

Finally, as mentioned above, the computing system is a conventional multicore sys-
tem, i.e. a shared memory parallel computing system. The communication systems
are, on the one hand, an Ethernet network that will allow connectivity through TCP/IP
sockets with the PLCs and with the robotic arms, and, on the other hand, the commu-
nication with the hyperspectral camera requires a higher bandwidth communication,
in particular a Camera Link2 protocol that requires a dedicated frame grabber.

3.2 Application description

In this section we describe the application structure design as well as the optimizations
performed to accomplish with the real time requirements of a real system designed for
a waste-recycle company. The waste-recycle prototype, see Figure 1 is composed by
a conveyor belt with a 80cm width size. The hyperspectral camera used is the FX173

model from Specim whose wavelength range goes from 900 to 1700 nm which is
able to capture 640 pixels x 224 wavelength bands at 670 frames per second (fps).
The camera height as well as the camera operating frequency have been set to obtain
a squared pixel of 1.08 mm. The system is also composed by one Robot RS007L4

from Kawasaki Robotics Inc. For testing purposes, the developed system has been
configured to classify only two main materials: plastic and cardboard, that will be
picked by the robot and stored in two different hoppers. Besides, there is a PLC that
controls the machine conveyor belt, lighting, robot operation signals and industrial
robot vacuums system. The computer used to perform the capture, pre-preprocess,
classification and segmentation of the different material objects is a 2 CPU based
Intel(R) Core(TM) i7-6800K CPU at 3.4GHz with 6 cores each one and with 64Gb
RAM running Windows 10 operating system.

3.2.1 Software architecture

First of all, we decided to use QT5, a cross-platform development framework, because
it is multiplatform (Windows, Linux, MacOS,...). Moreover, since the software will be
based on threads to distribute the heterogeneous work between the different available

2https://www.automate.org/vision/vision-standards/
vision-standards-camera-link

3https://www.specim.com/products/specim-fx17/
4https://kawasakirobotics.com/products-robots/rs007l/
5https://www.qt.io/
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cores, QT has a communication system based on signals and slots for the intercommu-
nication of the different threads. Finally, it will allow the development of a complete
graphical user interface (GUI).

In Figure 2 we show the different processes/threads involved in the application. As
can be seen, the application is mainly composed by four threads, namely main, cam-
era, segment and sender. The main thread is in charge of creating all the threads and
global objects as well as the management of the GUI. Currently, the GUI only shows
the raw data received from the hyperspectral camera, the classification data (plastic,
cardboard and belt), and the segmentation results (object detection), see Figure 3.
When QT Application object is created and launched, it sends a startCamera signal
to the camera thread that starts capturing lines from the spectral camera. Each camera
line is then pre-processed and classified according to the different materials. In order
to perform the segmentation process, each classified line is stored in a storage buffer or
window. By default, the storage buffer or window has a length of 1600 lines, although
this length can be determined by a configuration parameter. After the first window
is completely classified, a startSegmentation signal is sent to the segment thread, that
performs the segmentation of the different objects in the image for each material. Af-
terwards, every 400 new classified lines a new segmentation process is performed.
From these segmentations, we obtain the different material objects centroids (mass
object centre). Then we have to determine which of these centroids corresponds to
new detected objects or if they were detected in previous segmentations and should
not be included again. There is a global object that contains all the detected centroids.
Finally, the physical robots request to the sender thread for objects that are near to
its current position to pick them. Besides, the segment thread communicates to the
main thread though a QT communicator object to display the segmented image in the
graphical interface.

It would not be possible to perform the work of these four threads sequentially and
meet the time requirements initially set by the frequency operation of the hyperspectral
camera. The creation of these threads results in a first level of parallelisation that
distributes the heterogeneous work. If the work assigned to any of the threads does not
meet the time requirements, this work must be accelerated by using more processing
elements (cores).

Apart from the above-mentioned threads, shown in Figure 2, a Robot Operating
System6 (ROS) thread is used to communicate with the Programmable Logic Con-
troller (PLC) that controls the machine conveyor belt, camera lights, robot operation
signals and industrial robot vacuums system. In the prototype tested, it was necessary
to install a single PLC, but the QT application must generate a thread for each installed
PLC with which it needs to communicate.

6https://www.ros.org/
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Figure 2: Application thread architecture.

3.2.2 Hyperspectal detection and objects segmentation

As mentioned above, the waste recycling classification machine developed for the
company’s test purposes only requires the classification of plastic and cardboard ma-
terials. Therefore, the classification is performed using a threshold value using the
minimum value of the normalized spectrum of each pixel. Remark, that first we have
to determine if the pixel corresponds to an object pixel or if belongs to the conveyor
belt. In order to determine if a pixel belongs to the conveyor belt we use the mean of
the raw pixel spectrum values.

Although both the pre-processing and the classification algorithms performed in
this example machine are quite simple, we want to remark that our application archi-
tecture has been developed in a modular way so that both algorithms can be replaced
easily. This classification procedure was used to test that the system works in real
time, and that our architecture design allow the acceleration of these algorithms using
parallelism techniques.

In particular, in order to speed up the classification process, the OpenMP7 paradigm
has been used. The intrinsic parallelism associated with the classification of each pixel
has been exploited by using dynamic work sharing as a heterogeneous cost comput-
ing. Taking into account the number of threads running in the application shown in
Figure 2, the maximum number of additional cores available is equal to the number
of cores available in the computer minus the number of threads running (5 in our sys-
tem). If two additional cores are used, the sorting work is divided between three cores
(the two additional cores and the one assigned to the camera thread), so the minimum
number of cores required for the platform is 7 in this case. The complexity of the clas-
sification software module determines the number of additional cores required. We
want to remark that both the pre-processing and the classification process times are

7https://www.openmp.org/
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Figure 3: Graphical information.
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critical, because the camera thread can capture one line image every 1492 µs taking
into account the maximum capturing frequency of the camera (670fps).

Regarding the segmentation process, after the classification of the first complete
window (1600 lines) that corresponds with approximately 1.7 meters of the conveyor
belt in our prototype machine, a segmentation process using OpenCV 4.8.18 is per-
formed for each possible material. After that, we obtain a set of blobs that corresponds
to the different material objects detected in the image that must be picked by the dif-
ferent robots (one robot in the prototype machine). These blobs have an area and a
centre position (x, y) or centroid. Before adding a blob to the list of blobs pending to
be sent, the blobs that do not satisfy a minimum area (determined by the robot sucker
size) are discarded.

After the completion of the first complete image (1600 lines), a new segmenta-
tion is performed every 400 lines (configurable value), so as to see a smoother object
movement transition in the graphical interface and to keep visual tracking of the ob-
jects. This cute visual effect complicates the management of the blob list, because
three extra segmentations are performed for each image window and there will be pre-
vious detected objects in the list that are in a new position in the current segmentation.
To overcome this issue, before performing a new segmentation, the list of object is
updated in such a manner that its x centroid value is increased 400. In this way, before
adding new segmented blobs we can check if they were detected in previous segmen-
tations. Furthermore, the blobs are not deleted from the list when they are sent to
robots, instead, we put a sent mark to avoid the inclusion of blobs detected in the last
segmentation that were just sent to robots. Finally, the blobs will be deleted from the
list if their x position exceeds the maximum reachable position of the furthest robot.

Although the prototype machine just work with two materials, the segmentation
process has been implemented in a modular way and can be configured to work with
multiple materials through the software application parameters.

3.2.3 Robots communication subsystem

As shown in Figure 2, the application architecture contains a sender thread which is
in charge of the communication between the different possible robots and the appli-
cation. Although the prototype system developed has just one robot, the application
architecture and communication system can be configured to work with several robots.

First of all, when the sender thread is created and launched, it establishes a socket
communication between the computing platform and the different active robots. The
number of robots as well as if they are active or not is determined by the application
configuration parameters. Besides, each robot can be configured to pick just one type
of material or to pick several ones, and also it is possible to assign different hoppers
to the materials. Afterward, the computing platform starts receiving packets from the
different robots. There are three different types of command packets: BUSY, ACK,
and NEW. The BUSY command is sent by a robot when it is moving with a picked

8https://opencv.org/
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object and it can not accept new positions. In this case, the computing platform sends
and ACK response. The ACK command is sent by a robot to maintain the socket
opened to avoid timeout, and the computing platform also responds ACK. When a
NEW command is sent by a robot, in the communication packet also is sent the robot
current x and y position. In this case, the computing platform looks for an object in
the list which corresponds to the material that the robot is configured to pick with
the centroid nearest to the current position of the robot in order to speed-up the pick-
ing process. The computing platform compounds a packet with the selected object
information including, centroid position, material, and hopper number.

4 Results and conclusions

In this section we will provide the computing time results measured in the proto-
type developed system. The pre-process and classification of a captured camera line
(640pixels x 224 band values) last on average 0.173ms, which is equivalent to a cap-
turing frequency of 5767 fps. Remember that the FX17 camera has a maximum fre-
quency of 670fps. That means that we have room enough (8.6 times) to develop a more
sophisticated classification algorithm. Regarding the segmentation process, in the real
developed system, we require 20.314ms to perform a segmentation of a window of
1600 lines, which corresponds to a maximum frequency of 19690fps.

In the implemented prototype, the camera has a field of view (FOV) of 38◦ and
it has been located at a height with respect to the belt conveyor of 1004mm, which
provides a pixel size of 1.08mm. In order to get a square pixel, the conveyor belt
feed must match that pixel size for each captured line, so the PLC triggers the camera
every 1.49ms. Because of the characteristics of the conveyor and the resolution of
its encoder, the real developed system can reach a maximum conveyor belt speed
of 43.38m/min. The conveyor belt speed can be increased while maintaining the
maximum frame rate of the camera by increasing the pixel size. This will depend on
the size of the objects to be processed. Therefore, the pick & place robotic system
must be adapted to this parameters.

In this work, we have presented a modular software system applied to a prototype
recycling plant. This recycling plant will classify waste according to its chemical com-
position using HSI techniques in order to obtain higher quality recycled raw materials.
This work has demonstrated that the project is technically and economically feasible.
A study was also carried out to determine the minimum number of cores required for
the parallel computing platform.
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