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Abstract

This paper introduces a novel approach called reduced-dimension physics-informed
neural network (rd-PINN) for solving initial boundary value problems (IBVPs). The
goal of the proposed rd-PINN is to transform the partial differential equation (PDE)
into a system of ordinary differential equations (ODEs). Particularly, the numerical
solution is formulated in the form of a linear combination of approximation functions
and coefficients, wherein the approximation functions are admissible functions and the
coefficients are functions of time to be determined. Accordingly, solving the original
IBVP is transferred to the task of finding coefficient functions that satisfy the obtained
ODEs. To solve these ODEs, a multi-network structure is designed to parameterize
coefficients. Besides, we also proposed a framework that is used to automatically
impose initial conditions. The advantages of rd-PINN over the original PINN in terms
of solution accuracy and training cost are demonstrated through several numerical
examples with different types of PDEs, boundary conditions, and initial conditions.

Keywords: physics-informed neural network, direct method, Galerkin method, initial
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1 Introduction

Recent years, physics-informed neural network (PINN) [1], a typical application of
deep neural networks (DNNs), which has become popular for solving partial differ-
ential equations (PDEs) due to its simplicity and effectiveness. PINNs use automatic
differentiation (AD) [2] to get over the mesh issue, which is a limitation of traditional
numerical methods [3, 4]. The goal of PINN is to minimize the loss function, which
is determined by using PDEs and related I/BCs to describe physical difficulties. After
years of research, PINN and its variants are being applied more and more to solve
forward and inverse PDEs in a variety of domains, including biomechanics [5], fluid
mechanics [6], and solid mechanics [7, 8]. However, there are still some limitations
in applying PINN-based models to solve PDEs, especially for IBVPs. It can be men-
tioned, such as PINN and its variants requires expensive cost to achive good enough
solutions. Another significant concern when solving IBVPs is the precise enforcement
of initial and boundary conditions (I/BCs). In static analysis, several frameworks of
exact impose BCs were developed and widely used due to their merit in improving
solution accuracy [9–11]. In contrast, studies on simultaneously imposing I/BCs in
dynamic problems are still open.

Along this path, a novel reduced-dimension physics-informed neural network (rd-
PINN) is developed to overcome above-mentioned challenges. The proposed rd-PINN
operates based on direct method [12], where the PDE is transferred to a system of ordi-
nary differential equations (ODEs). Particularly, we aim to seek a numerical solution
expressed in form of a linear combination of approximation functions and coefficients.
Here, the approximation functions are admissible functions and coefficients are func-
tions of time to be determined. Subsequently, the weak form of the PDE is substituted
with this direct solution, and integration over the spatial domain produces a system
of ODEs. We use a multi-network structure to parameterize the unknown coefficient
functions in order to solve these ODEs, with each sub-network responsible for pre-
dicting a particular field variable. The BCs are automatically satisfied via selection
criteria of approximation functions. We also propose a scheme to handle ICs based on
Galerkin formulation.

The rest of this paper is organized as follows. In Section 2, the establishment of rd-
PINN is presented, the selection criteria of approximation functions and the technique
of imposition of ICs are also mentioned. Section 3 shows the superior performance
of rd-PINN over the original PINN in terms of solution accuracy and training time
through several benchmark problems. Finally, we summarize this work in Section 4.
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2 Reduced-dimension physics-informed neural network

2.1 Methodology of reduced-dimension physics-informed neural
network

Let consider the initial boundary value problems (IBVPs), which is generally pre-
sented as

N [u (x, t)] = f (x, t) , (x, t) ∈ D, (1a)
B [u (x, t)] = uB, (x, t) ∈ ∂Ω× (0, T ] , (1b)
I [u (x, 0)] = u0, x ∈ Ω, (1c)

where N and f are respective differential operator and source function. B and I
represent boundary and initial operators, where uB and u0 denote prescribed values on
the boundary ∂Ω and at the initial instant t = 0, respectively.

To start with the development of the rd-PINN model, we first introduce the weighted-
integral statement of Eq. (1a) as∫

Ω

w (x) [N (u)− f ] dx = 0, (2)

where w is called weight function and satisfy the essential BCs in homogeneous form.
As above-mentioned, we assume that the latent solution is simulated in the form of
a linear combination of approximation functions ϕi and coefficient functions ci, its
explicit form is given by

urd−PINN (x, t) = ϕ0 (x, t) +
N∑
i=1

ci (t)ϕi (x) , (3)

The set ϕi are admissible functions which must satisfy several continuity and boundary
conditions. Meanwhile, ci are unknown functions of time and satisfy the system of
ODEs gained by the following way.

On substituting the approximated solution (3) in Eq. (1a) and using the weight
function Galerkin-based chosen, it is to identify ϕi, i = 1, · · · , N respectively. The
system of one-dimensional ODEs is given by∫

Ω

ϕi (x) [N (urd−PINN)− f ] dx = 0, (4)

Let us assume the predicted coefficient by NN denoted as ci = NN (t,Φi), the opti-
mal results is obtained by minimize the loss function defined as follows

Lrd−PINN =
N∑
i=1

∥ Ri (c1, · · · , cN) ∥22,(0,T ], (5)
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where the L2-norm ∥ · ∥2 in (5) is calculated by using Gaussian quadrature [13] and

Ri (c1, · · · , cN) =
∫
Ω

ϕi (x) [N (urd−PINN)− f ] dx (6)

It is noted that the initial and boundary conditions are automatically handled via sev-
eral schemes discussed in the following sections, leading to the loss function (5) in-
cluding only quantities of ODEs.

2.2 Selection criteria of approximation functions

As above-mentioned, the set (ϕ0, ϕi) must satisfy several conditions following listed
as:

1. ϕi have to be differentiability in the same order with differential operator; this
requirement is put forth to avoid a trivial value N (urd−PINN) = 0.

2. The set {ϕi} is linear independent and complete. Then, the uniqueness of the
solution to the system (4) is ensured.

3. ϕi requires satisfying all BCs in homogeneous forms; in other words, B (ϕi) =
0.

4. ϕ0 satisfies all specified BCs associated with the equations; in other words,
B (ϕ0) = uB.

Motivated by the growth of the Fourier series [14], we decided to employ sine,
cosine, and their variants as the approximation functions in this study.

2.3 Imposition of initial conditions via Galerkin formulation

In this section, we present a framework for imposing ICs, wherein the ICs of the latent
solution are replaced by the ICs of coefficients via Galerkin formulation as follows∫

Ω

ϕi{I (urd−PINN) (x, 0)− u0}dx = 0, i = 1, · · · , N, (7)

which gives

[A] {c} = {b}, (8)

where

Aij =

∫
Ω

ϕiϕjdx, (9a)

bi =

∫
Ω

ϕi [−I (ϕ0) (x, 0) + u0] dx, (9b)
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and c = [I (c1) (0) , · · · , I (cN) (0)]
T is a vector of initial values of the coefficient

functions ci, and obtained by multiplying the inverse matrix [A]−1 into both sides of
Eq. (8) as

{c} = [A]−1 {b}. (10)

Consequently, the structure of the constrained outputs are modified as:

ĉi = Ψ(t) ci + I (ci) (0) , (11)

where Ψ(t) is a trial function satisfy ICs in homogeneous form. There are several
previous studies in determining the trial function, such as using R-functions [10, 15],
or DNNs [16].

3 Numerical examples

We use the fully-connected DNNs to parameterize predictions. The structure of each
NN includes two hidden layers, each with twenty neurons; and sine function is em-
ployed as an active function. The training process is implemented in TensorFlow [17],
in which sine activa- tion function was used and a hybrid optimization method be-
tween Adam [18] and L-BFGS [19] optimizers as suggested in [20].

3.1 Heat transfer problem

We first consider the transient heat transfer problem described by

∂u

∂t
− ∂2u

∂x2
= 0, 0 < x, t < 1 (12a)

u (0, t) =
∂u

∂x
(1, t) = 0, for t > 0, (12b)

u (x, 0) = 1, for 0 < x < 1. (12c)

The approximation functions are chosen as

ϕ0 = 0, (13a)

ϕi = sin
[
(2i− 1)

πx

2

]
, for i > 0. (13b)

The predicted coefficients after 10000 epochs are illustrated in Figure. 1. The exact
solution of this problem is given in Figure 2, while the numerical solutions and corre-
sponding point-wise errors of rd-PINN and PINN are showcased in Figure 3. Besides,
both models respective require 0.62 and 62.43 minutes for training. It can be observed
that rd-PINN provide a more accurate solution while spend less training cost over the
other model.
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Figure 1: Predicted coefficient functions for heat transfer problem

Figure 2: Exact solution for heat transfer problem

3.2 Advection-diffusion equation

Let us consider the advection-diffusion equation, where the governing equation is
given by

∂u

∂t
+ µ1

∂u

∂x
+ µ2

∂u

∂y
−

(
∂2u

∂x2
+

∂2u

∂y2

)
= f, (x, y, t) ∈ Ω× (0, 1] (14)
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Figure 3: Approximated solutions and corresponding errors of rd-PINN and PINN for
heat transfer problem

where µ1 = µ2 = 4 are diffusion coefficients and Ω = [0, 4] × [0, 4] is a square
domain. The boundary and initial conditions are expressed as

u (x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, 1] (15a)
u (x, y, 0) = xy (4− x) (4− y) , 0 ≤ x, y ≤ 4 (15b)

The source term f in (14) is specified by the analytical solution , it is: u (x, y, t) =
e−0.25txy (4− x) (4− y). Here, the direct solution is rewritten in form:

u (x, y, t) = ϕ0 (x, y) +
N∑
i=1

M∑
j=1

cij (t)ϕij (x, y) , (16)

where the approximation functions ϕij are chosen as:

ϕ0 (x, y) = xy (4− x) (4− y) , (17a)

ϕij (x, y) = sin
(
i
πx

4

)
sin

(
j
πy

4

)
, for i, j > 0 (17b)
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Figure 4 showcases the predictions of coefficients by rd-PINN. The simulations and
the absolute errors of rd-PINN and original PINN are illustrated in Figures. 5 and 6,
respectively. On the observation from Figure. 5, the spectrum of both rd-PINN and
PINN solutions agree with the exact ones at all considered times. Nonetheless, the
simulation by rd-PINN is significant better than the other when considering the point-
wise absolute errors, as shown in Fig. 6. For the training time, rd-PINN and PINN
respective took 0.80 and 192.69 minutes to train DNN.
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Figure 4: Predicted coefficient functions for advection-diffusion equation

3.3 Transient beam bending

For the final example, we consider the transient beam bending under initial displace-
ment. The equilibrium equation is provided as follows:

∂2w

∂t2
+

∂4w

∂x4
= 0, (x, t) ∈ (0, L)× (0, T ) (18)
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Figure 5: Exact and approximated solutions at several snapshots of rd-PINN and
PINN for advection-diffusion equation

Figure 6: Absolute errors at several snapshots of rd-PINN and PINN for advection-
diffusion equation

where L is the length of the beam. The beam is fixed at both ends and subjected to an
initial deflection, so the I/BCs are described as

w (0, t) = w (L, t) = 0, 0 ≤ t ≤ T, (19a)
∂w

∂x
(0, t) =

∂w

∂x
(L, t) = 0, 0 ≤ t ≤ T, (19b)

w (x, 0) = sin (πx)− πx (L− x) , 0 ≤ x ≤ L, (19c)
∂w

∂t
(x, 0) = 0, 0 ≤ x ≤ L. (19d)
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Let L = 1 m and T = 1, the latent solution w is transformed to one-parameter direct
solution (N = 1) where the approximation functions are given by

ϕ0 = sin (πx)− πx (L− x) , (20a)
ϕ1 = 1− cos (2πx) . (20b)

The prediction of coefficient function gained by rd-PINN after 10000 epochs is il-
lustrated in Figure. 7. In this problem, the reference solution is generated by finite
element method [21], as shown in Figure. 8. Besides, the approximated solutions
and the corresponding point-wise absolute errors provided by rd-PINN and PINN are
presented in Figure. 9. This figure indicates that the simulation of rd-PINN reached
an agree-well in accuracy compared to the reference one. On the contrary, the PINN
model failed to produce a correct solution. The causes include the PINN framework’s
poor performance when applied to high-order PDEs and a wide range in the conver-
gence rates of different terms that add to the overall training error. Again, rd-PINN
spent less training time than PINN. Particularly, our model required 0.7 minutes to
train DNN while the other one took 190.92 minutes.
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Figure 7: Predicted coefficient functions for beam bending problem

4 Concluding remarks

In this work, a novel approach called rd-PINN is developed for solving IVPs. The rd-
PINN operates based on the core idea of transferring the PDE to a system of ODEs.
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Figure 8: Exact solution for beam bending problem

In detail, the numerical solution is derived as a linear combination of approximation
functions and coefficients, wherein the approximation functions are predetermined
and satisfy several specified BCs, while the coefficients are functions of time to be
determined. The DNN framework is integrated to solve the gained ODEs, wherein
each coefficient function is parameterized by each sub-NN. Furthermore, the I/BCs
are automatically enforced via the separated schemes, respectively. Particularly, the
BCs are satisfied by several criteria for selecting approximation functions while the
ICs are immediately imposed based on the Galerkin formulation.

Through various examples, it can be observed that the rd-PINN shows its merit
in improving solution quality and also significantly reduces training time compared to
the original PINN. Our method promises to be extended and applied to other problems
such as inverse and seismic modeling.
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