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Abstract

This work presents a distributed approach based on Graph Theory for detecting en-
closed holes in density-based topology optimization using the traditional material pe-
nalization scheme. The distributed topology optimization framework divides the do-
main into several subdomains to exploit parallel computing resources. The proposal
generates a set of graphs from the empty elements of the meshes of such subdomains,
detecting the empty regions and classifying them. Then, it generates a hierarchical
distributed graph between the subdomains to obtain a coherent representation of the
connectivity design, minimizing inter-node communications in the classification of
the empty regions. We use such information to introduce manufacturing constraints
preventing enclosed holes in the final designs, which is especially useful in diverse
additive manufacturing techniques because such holes can induce failures in the man-
ufacturing process. We validate the proposal using a classical two-dimensional can-
tilever problem with asymmetric simplifications and parallel computing.
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computing, additive manufacturing, computational effort.
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1 Introduction

Topology optimization techniques provide innovative and high-performance designs
by minimizing a cost function subjected to constraint sets. Commonly, we con-
sider these results conceptual designs because they are complex to manufacture using
standard manufacturing techniques. Additive Layered Manufacturing (ALM) tech-
niques can manufacture directly the complex geometries provided by topology opti-
mization techniques [1] using a layer-by-layer strategy, obtaining significantly high-
performance and lightweight structural parts.

In the case of minimizing compliance [2], it is usual to obtain designs with cavities
and enclosed holes. Such holes and cavities contribute to compliance minimization or
stiffness maximization of designs. However, they can complicate the manufacturing
process depending on the additive manufacturing technique. The enclosed cavities
are undesirable for many ALM technologies, such as Selective Laser Sintering (SLS),
Stereolithography (SLA), and Fused Deposition Modeling (FDM) [3]. In the first two
manufacturing techniques, we should remove the not sintered powders or resins that
serve as support material after fabrication. This process is not feasible in enclosed
cavities, which induces problems depending on the material used. Besides, we cannot
remove the support structures in the latter ALM technology after the fabrication of the
optimized design.

We focus on removing the enclosed cavities in topology optimization using com-
pliance minimization. We usually formulate removing enclosed holes as a manufac-
turing constraint of ALM. We can find different approaches addressing this problem
in the literature. A widely adopted approach is forcing the design to be a simply con-
nected structure [4], introducing the requirement of eliminating the enclosed cavities
as a connectivity constraint in the topology optimization formulation. Some works
use this approach transforming the connectivity constraint into an equivalent problem,
such as a temperature constraint in the Virtual Temperature Method (VTM) [5] and
an electrostatic one using the Poisson method [6]. Another approach consists of im-
posing the void phase connectivity by constraining the algebraic connectivity in the
context of Graph Theory [7]. We also find several works removing the enclosed cav-
ities with heuristic methods using evolutionary topology optimization methods, such
as pathfinding schemes [8] and hole-filling approaches [9]. Another possibility is us-
ing restriction methods to gradually smooth the holes and cavities by controlling the
topology of the design. We can mention persistent homology approaches to intro-
duce topological constraints in the optimization process [10]. In this work, we adopt
a similar approach to penalize the enclosed cavities during the topology optimization
process.

Another key factor to address topology optimization incorporating manufacturing
constraints in real-world problems is the computational effort. High-performance
computing (HPC) has shown effectiveness in increasing the computing performance
using multi-core [11] and many-core [12] computing in the context of topology opti-

2



mization. We can also improve the computing performance using hierarchical paral-
lelization schemes in the context of topology optimization [13,14]. For these reasons,
we develop the tools needed to take advance of the computing resources of modern
computer system infrastructures both in the detection of enclosed cavities and the
topology optimization introducing manufacturing constraints.

We organize the remainder of the manuscript as follows. We devote Section 2 to
identifying connected empty regions and their classification. The objective to detect
enclosed cavities efficiently using parallel computing. Section 3 reviews the basis and
theoretical background of density-based topology optimization and the modifications
needed to incorporate the manufacturing constraints preventing enclosed cavities in
the resulting design. Section 4 presents the numerical experiments evaluating the per-
formance, feasibility, and scalability of the techniques adopted for taking advantage
of parallel multi-core computing in density-based topology optimization incorporat-
ing manufacturing constraints. Finally, Section 5 presents the concluding remarks of
the proposal.

2 Enclosed hole detection

Adopting a density-based topology optimization approach, we relax the solid/void
material distribution representation characterizing composite materials [15] by inter-
polating the material properties. In particular, we use the Solid Isotropic Material
with Penalization (SIMP) method [2], which links the elastic modulus of elemental
stiffness and the continuous design variables ρ(x) as

E(ρ) = ρpE0, (1)

where E0 is the elastic modulus for the solid material and p > 1 is the penalization
power. We can use he elemental design variable of ρ(x) of the topology optimization
approach to decide if the elements correspond to solid or void regions by thresholding.
We can then define the domain as

Ω = Ωv ∪ Ωs, with

{
Ωv : x ∈ {ρ ≤ ρth}
Ωs : x ∈ {ρ > ρth}

(2)

where Ωs is the solid region, Ωv is the void region, and ρth is the thresholding value of
the design variable.

We then use the connectivity concept [16] to adopt a simple strategy for detect-
ing and classifying holes from the domain Ωv during the design process using Graph
Theory. The approach consists of the following tasks using the elements of the do-
main Ωv: (i) labeling the elements in the boundary, (ii) generating disconnected graphs
from elements, and (iii) labeling the graphs into open voids Ωov and enclosed voids
Ωev with Ωv = Ωov ∪ Ωev depending on they contain elements in the boundary or
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Figure 1: Detection of enclosed holes: (a) the multiply connected structure and the
binarized design field labeled by boundary edges, and (b) the undirected
disconnected graphs for detecting holes and classifying them into opened
and enclosed ones.

not, respectively. We generate the undirected graphs from the domain Ωv using the
elements as graph nodes and the edges or faces between elements as the arcs of the
undirected graph. We then use the breadth-first search method [17] to find the dis-
connected graphs representing the empty regions in the domain Ωv. The breadth-first
search method is the most efficient graph search approach for undirected graphs. Fi-
nally, we classify the disconnected graphs of the domain Ωv as opened voids Ωov and
enclosed voids Ωev. The former has labeled nodes in the boundary, whereas the latter
does not have them.

Figure 1 shows a simple example of the hole detection and the classification of
void cavities. Figure 1(a) depicts a design field binarized using the criteria of equation
(2) with the threshold ρth. It also shows the yellow labeled elements depending on
whether their edges or faces are in the boundary. Figure 1(b) shows the disconnected
undirected graphs generated with domain Ωv using the breadth-first search method.
It also shows the classification of cavities as Ωov or Ωev depending on the nodes of
disconnected graphs labeled as containing a boundary edge or face.

We parallelize the proposed approach to find enclosed cavities by partitioning the
domain into n parts as Ω = Ω1 ∪ · · · ∪ Ωn. We then follow the same approach as in
the serial counterpart to find the set of disconnected graphs classified as Ωov or Ωev.
Such subdomains keep the sharing edges or faces between subdomains, which we
consider arcs when generating the disconnected graphs. We then build a hierarchical
graph representation from the distributed disconnected graphs connecting the graphs
of adjacent subdomains. This approach minimizes inter-node communications in the
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Figure 2: Detection of distributed enclosed holes: (a) the multiply connected structure
and the binarized design field labeled by boundary edges, and (b) the hierar-
chical undirected distributed graph for detecting holes and classifying them
into opened and enclosed ones (green arcs indicate inter-node communica-
tions).

classification of the domain Ωv. We have to remark that classifying the distributed
disconnected graphs requires a recursive process to verify that the classification is
coherent. This recursive process requires inter-node communications, but using the
hierarchical representation ensures reduced bandwidth use.

Figure 2(a) shows the design domain Ω divided into two subdomains Ω = Ω1 ∪Ω2

containing the corresponding solid and void domains per subdomain. We tessellate
both subdomains and label the elements containing some edge or face in the bound-
ary. Figure 2(b) shows the undirected graphs generated by each subdomain from the
tessellated domain considering the elements of the domain Ωv = Ωv

1 ∪ Ωv
2. We use

the same approach as the serial counterpart to classify the disconnected graphs. It
also shows the hierarchical representation adopted for inter-node communications.
One can observe in this simple example that the inter-node communications decrease
meaningfully using Level 0 of the hierarchical representation instead of Level 1.

3 Topology optimization framework

We adopt the density-based topology optimization approach to find the optimal ma-
terial distribution with prescribed mechanical properties from scratch, i.e., without
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making any assumptions about the design configuration. Assuming the material inter-
polation model of equation (1) with a penalization power p ≥ 3 to ensure that we do
not violate the Hashin-Shtrikman bounds, we relax the minimum compliance topology
optimization problem to allow using gradient-based optimization approaches.

3.1 Classical formulation

We can formulate the minimum compliance topology optimization as minimizing the
structural compliance as follows

min
ρ

c(ρ̃) = fTu(ρ̃)

s. t. : K(ρ̃)u(ρ̃) = f (3)
: E(ρ̃) = Emin + ρ̃p (E0 − Emin)

: V (ρ)− V ∗ ≤ 0, ρ(x) ∈ [0, 1],

where ρ̃ is the regularized design field, K(ρ̃) is the global stiffness matrix, u(ρ̃) and
f are the global displacement and force vectors, E(ρ̃) is the artificial elastic modulus
with Emin > 0 for empty material, and V (ρ) is the volume fraction of the design
limited by the target volume V ∗.

We can impose a length scale constraint by filtering the design field ρ to obtain
a well-posed topology optimization problem, proving Bourding [18] the existence of
solutions in this setting. We perform the convolution product of the design field ρ with
the filter F as ρ̃(x) = (F ∗ ρ)(x) with

∫
BR

F (x) = 1, being BR an open ball of radius
R > 0 with F ≥ 1 ∀x ∈ BR. In practice, we use the following expression

ρ̃(x) =

∑
e∈Ne

w(xe)veρe∑
e∈Ne

w(xe)ve
, (4)

where ρ̃ represents the filtered design field, ve is the elemental volume, Ne is the
neighborhood set of elements lying within the radius R, and w(·) is a conic weighting
function w(xe) = R− ||xe − x||2.

We can define the implicit form of the convolution integral for the density filter on
the domain Ω ⊂ Rn as the solution of the following Helmholtz differential equation
with homogeneous Neumann boundary conditions

−r2∇2ĝ + ĝ = g ĝ ∈ Ω (5)
∂ĝ

∂n
= 0 ĝ ∈ ∂Ω
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where g is the nodal vector of design variables, ĝ is the filtered field, and r is a length
parameter playing a similar role as the radius R of the convolution integral for calculat-
ing the density filter. We can obtain a relationship between length scales to configure
the equivalent r parameter to the corresponding physical radius R of the convolution
integral. We approximate the projections between nodal and elemental g variables
using interpolation functions. We can solve this problem efficiently using a parallel
solver. After obtaining the nodal values of the filtered field ĝ, the filtered sensitivity
for a given element is obtained by averaging the nodal values of the filtered field [19].

To use gradient-based optimization methods, we calculate the sensitivity of (3) to
the design variable ρ using the chain rule as follows

∂c(ρ̃)

∂ρ
=

∂c(ρ̃)

∂ρ̃

∂ρ̃

∂ρ
, (6)

where u∗ is given by the solution of the adjoint problem Ku∗ =
∂c(ρ̃)

∂u
= f , whose

solution is u∗ = u because the minimization of the structural compliance is self-
adjoint, obtaining the different terms as

∂c(ρ̃)

∂ρ̃
= −u∗(ρ̃)T

∂K(ρ̃)

∂ρ
u(ρ̃) (7)

∂ρ̃

∂ρ
=

w(xi)vi∑
i∈Ne

w(xi)vi
(8)

3.2 Manufacturing constraints

We can introduce a penalization scheme of the enclosed cavities detected during the
topology optimization process. To do so, we define the φ variable as follows

φ(ρ(x),Ωev) =

{
1− ρ(x), if x ∈ Ωev

0, otherwise
, (9)

reintroducing the φ variable in the design one using a maximum function ξ = max(ρ, φ),
smoothing it using the p-norm as follow

ξ̃ = (ρq + φq)
1/q. (10)

We can then formulate the structural minimization problem as follows:
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min
ρ

c(ξ̃) = fTu(ξ̃)

s. t. : K(ξ̃)u(ξ̃) = f (11)
: E = Emin + ξ̃p (E0 − Emin)

: V (ρ)− V ∗ ≤ 0, ρ(x) ∈ [0, 1],

: gev ≤ g∗ev

where ξ̃ ≈ max(¯̃ρ, φ) is the smoothed maximum of regularized and projected design
field ¯̃ρ and the φ field penalizing the enclosed voids, K(ξ̃) is the global stiffness
matrix, u(ξ̃) and f are the global displacement and force vectors, E(ξ̃) is the artificial
elastic modulus with Emin > 0 for empty material, V (ξ̃) is the volume fraction of the
design limited by the target volume V ∗, and gev is the number of disconnected graphs
in the domain Ωev during the topology optimization limited by the target number of
empty cavities g∗ev.

We can then calculate the sensitivity of equation (11) to the design variable ρ using
the chain rule as follows

∂c(ξ̃)

∂ρ
=

∂c(ξ̃)

∂ξ̃

∂ξ̃

∂ρ̃

∂ρ̃

∂ρ
, (12)

obtaining the different terms as

∂c(ξ̃)

∂ξ̃
= −u(ξ̃)

T∂K(ξ̃)

∂ρ
u(ξ̃) (13)

∂ξ̃

∂ρ̃
= (ρ̃q−1 − φq−1) · (ρ̃q + φq)

1
q
−1 (14)

∂ρ̃

∂ρ
=

w(xi)vi∑
i∈Ne

w(xi)vi
, (15)

adopting a continuation strategy by increasing the radius R to ensure the convergence
of the optimization until we satisfy the constraint gev − g∗ev ≤ 0 of the optimization
problem (11).

3.3 Parallel framework

We organize the stages of density-based topology optimization using a modular par-
allel architecture. The modules group the calculations required by some functionality.
The framework consists of several modules providing the required functionalities by
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the topology optimization approach. The underlying idea is to facilitate the config-
uration of different modules, reusing code already tested using other algorithms or
topology optimization techniques. We also can configure these modules for serial
or parallel computing, requiring a different compiler and compatibility with diverse
libraries. We describe the organization of modules and functionalities below.

Initialization

Design parameters
Model – Boundary conditions

Initialize design variables Analysis - FEA

Calculation objective function

Regularize
Helmholtz PDE using Ri

Update design variables - MMA

Convergence
criteria

End

Yes

No

It++

Partitioning

Calculation sensitivities

gev < gev*

Yes

φ=0

Update           φ (ρ)

Update           ξ(ρ)

No
cont < itr

It=1, i=1, cont=1

i++, cont=1
No

Yes
cont++

Enclosed void detection
Ω1

1

Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

21 32 4

5 86 2 71

3

3

Figure 3: Flowchart of density-based topology optimization incorporating manufac-
turing constraints using parallel computing.

The initialization module defines the design parameters and boundary conditions
of the model. It also initializes the design field that satisfies the volume constraint of
density-based topology optimization approaches. The partitioning module divides the
domain into many subdomains following some criteria, such as minimizing the inter-
face between subdomains. This module generates a dual graph from the mesh, where
each element becomes a vertex, and the common nodes of elements become arcs be-
tween elements. The method then uses a multilevel k-way partitioning approach [20]
to obtain the subdomains. The analysis module implements the solver adopted for
solving the system of equations from the PDE governing the physics of the problem.
We can select serial and parallel computing, usually using the former for the initial
development and debugging and the latter for addressing large-scale models. It sup-
ports direct and iterative solvers, preconditioning the latter using Algebraic Multigrid
(AMG) and Geometric Multigrid (GMG) methods.

The regularization module implements the filter for density-based topology opti-
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mization formulation. In this case, we use the Helmholtz PDE with homogeneous
Neumann boundary conditions filter, which is more efficient for parallel computing
using different regularization distances R. The module to update the design imple-
ments the Method of Moving Asymptotes (MMA) using parallel computing. The
sensitivity and objective function calculations are straightforward because they only
use elemental information. Finally, the enclosed void detection module implements
the technique presented in Section 2.

Figure 3 shows the flowchart of the parallel implementation of the distributed
density-based topology optimization incorporating manufacturing constraints using
the modules presented above. One can observe that the partitioning module divides
the problem into many subdomains to perform the recursive stages of the density-
based topology optimization method. In particular, the analysis module uses FEA
to solve the system response, and the corresponding modules calculate the objective
function and sensitivities, regularize the design field, and update the design variables.
The proposed method to detect the enclosed cavities operates on the corresponding
subdomains.

4 Numerical experiments

This section shows the preliminary results of the modified formulation presented
in Section 3.2 for incorporating manufacturing constraints in minimum compliance
topology optimization. The formulation requires the identification and classification
of void cavities. We compare the designs using the classical and modified formula-
tions using a simple two-dimensional cantilever problem to show the ability of the
method to remove enclosed void cavities. The two-dimensional cantilever problems
consist of locating a punctual load at the center of the end cantilever using asymmetric
simplications. We set the target volume V ∗ to 25% of the volume of the initial domain.
We impose the initial length scale constraint with a radius R of size doubling the ele-
ment size, incrementing its value in the same initial magnitude every 30 iterations for
the continuation strategy until we satisfy the constraint gev − g∗ev ≤ 0.

We evaluate the cumulative timing for both the classical topology optimization for-
mulation and the modified one introducing manufacturing constraints. The cumulative
timing aims to show the computing benefits of the proposal scaling with the comput-
ing resources. We use up to three computers connected through a 10 Gbps Ethernet
for running the experiments. These computing nodes incorporate two E5-2687W v4
CPUs and 256 GB of RAM. The CPUs include 12 cores working at 3.0 GHz, running
up to 24 processes in parallel per computing node.

Figure 4(a) shows the geometric configuration and boundary conditions of the can-
tilever problem with one punctual load at the cantilever’s endpoint. We can observe
the definition of boundaries at all the edges of the cantilever. Figure 4(b) shows the an-
tisymmetric simplification for the structural analysis, the mesh, and an example with
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Figure 4: Cantilever experiment: (a) Geometric configuration and boundary condi-
tions, (b) tessellated domain divided into eight subdomains with asymmetric
simplifications, and (c) evolution of the objective function of deterministic
and manufacturing-constrained topology optimizations.

eight subdomains used for parallel computing the topology optimization problem. We
can observe that we do not constrain the symmetry axis as a boundary in the empty
hole detection method introduced in Section 3.2. Figure 4(c) shows the evolution of
compliance during the topology optimization process. One can observe how the reg-
ularization radius R increases until we remove the enclosed void cavities satisfying

11



the constraint gev ≤ 0. The design introducing manufacturing constraints has not
enclosed voids, whereas the deterministic design shows three enclosed holes.
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Figure 5: Strong scaling of cantilever experiment 2 using a grid of 320×160 (51200)
linear elements (103362 DoFs): cumulative wall-clock time using (a) a dif-
ferent number of cores in the same core and (b) using a different number of
computing nodes.

Figure 5 shows the strong scaling experiment for evaluating the scalability of the
approach with computing resources. It shows the cumulative wall-clock time for the
topology optimization using different numbers of subdomains to assess the use of sev-
eral cores in one computing node and using up to three computing nodes. We can ob-
serve that the performance increases with the number of cores in the same computing
node. However, the improvements decrease by introducing more computing nodes.
We can attribute this fact to inter-node communications, which are much slower than
intra-node communications. Inter-node communications also can generate bandwidth
problems.

5 Concluding remarks

We aim to introduce manufacturing constraints in topology optimization to avoid
empty material cavities in the final designs, which generate problems in many ad-
ditive manufacturing processes. Incorporating these constraints in the design allows
to manufacture the high-performance designs directly using ALM techniques. We
present a novel approach to detecting enclosed void cavities from the design variable
information. We implement this technique using parallel computing with distributed
memory. We also incorporate the method to detect the enclosed holes into a minimum
compliance topology optimization formulation as manufacturing constraints.

The numerical experiments show that the proposal is feasible for obtaining designs
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without empty material cavities. The experiments compare the design performance
using the minimum compliance formulation and incorporating the manufacturing con-
straints. One can observe that the minimized compliance slightly increases by intro-
ducing the manufacturing constraints w.r.t. the classical topology optimization formu-
lation. The numerical experiments also show that the proposal can be incorporated
into a distributed topology optimization framework, achieving speedups of up to 14x
using 24 cores w.r.t. the serial implementation of the topology optimization approach.
All these developments will allow us to address real-world problems incorporating
manufacturing constraints in future works.
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