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Abstract 
 

This paper presents a nonlinear finite element analysis (FEA) of RC beams by 

adopting material models based on machine learning (ML). The Gaussian Process 

Regression (GPR) approach is considered for constructing concrete and steel material 

models. However, a GPR material model has an increased computational load, so it is 

difficult to use in the nonlinear analysis of RC structures composed of numerous 

members. To solve this limitation, GPU acceleration is based on the constitution of 

the parallelized computing structure. GPU-accelerated Python-based FEA program is 

developed to trace the nonlinear behaviour of RC beams. The FEA and experimental 

data for two representative RC beams are compared. The results obtained from the 

developed program confirm that the solution procedure using GPU acceleration with 

GPR material models can effectively be used in the nonlinear analysis of large RC 

structures with nonlinear behaviours. 
 

Keywords: Hardware acceleration, Finite Element Analysis, Gaussian process, 

Reinforced Concrete, Parallel processing, High performance computing. 
 

1  Introduction 
 

Modern numerical simulation methods such as finite element analysis (FEA) and the 

boundary element method (BEM) have been popularly adopted in many different 

fields to identify physical phenomena, and the structural analysis field is no exception. 

Since structural behavior, particularly nonlinear behavior, is based on conservation 

and material laws, the prescribed stress-strain relation needed to be defined even if 
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the amount of corresponding experimental data is very limited. In recent years, 

however, unlike in the conventional approaches, a material model has been directly 

defined from data due to the application of the machine learning (ML) technique [1], 

[2] which can resolve the material uncertainty that was represented by the random 

parameters in the conventional approach and has the flexibility for the 

supplementation of additional experimental data [3]. 

In addition to the adoption of ML techniques, the data processing in the training and 

inference procedure also needs to be considered because, as mentioned above, 

implementation of ML usually requires a large amount of computational load and, 

results in a huge increase in total time consumption even over simple structural 

members [4]. As a result, the graphics processing unit (GPU) is popularly used for 

training and testing with most of the ML algorithms, including the GPR model. Since 

the GPU computing ecosystem that is based on a scalable parallel architecture has a 

large number of computing cores in a single unit, unlike the central processing units 

(CPU), which have a very limited number of cores, a parallelized computing structure 

is important when considering the GPU acceleration. This type of accelerating 

operation using the GPU as a co-processor of the CPU is called a general-purpose 

GPU (GPGPU) and is easily implemented in the Compute Unified Device 

Architecture (CUDA) platform. However, hardware acceleration is not a simple 

handover to another processing component. Since the GPU cannot process the given 

task alone as it is a co-processor, communication between the CPU and GPU acts as 

an overhead and significantly decreases the efficiency of computing performance if 

the program requires frequent communication between processors. That means that 

the overall tasks need to be carefully constructed to minimize communication while 

the task maintains the vectorized structure. Furthermore, a limited amount of 

dedicated memory space in the GPU imposes restrictions on the applicability of 

hardware acceleration, so using memory-efficient variables, such as sparse matrices, 

is important and raises the limit of the maximum possible dataset size of hardware 

acceleration [5]. Finally, due to the architecture difference, GPU cannot handle all of 

the instruction set CPU can handle, and mostly the operation that GPU can handle is 

currently limited to the linear algebra operations. 
Of ML techniques, Gaussian Process Regression (GPR) has been widely used for 

estimating the compressive strength of the material [6], for composing a constitutive 

material model [7], and for defining a data-driven material model for stochastic 

structural analysis [8]. However, this data-driven method is mostly based on stochastic 

inference, which leads to a drastic increase in the computational cost compared to 

conventional constitutive material models, which are largely based on arithmetic 

operations, because the stochastic inference is based on the calculation of the 

probabilistic field over higher dimensions. Regarding this high cost of computing, an 

optimization and computing strategy for the material nonlinear analysis with the GPR 

material model was needed. 

Upon constructing the GPR-based material models for concrete and reinforcement 

based on synthetic monotonic uniaxial stress-strain relationships formed from the 

idealized constitutive models, we developed the data-driven Python-based FEA 

program to trace the nonlinear behavior of reinforced concrete (RC) beams. We used 

the Timoshenko beam theory [9]. Then, the entire implicit static layered beam solution 
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procedure, from constructing the element stiffness matrix to the internal force 

determination, was vectorized, optimized for modern computers, accelerated with the 

GPU, and reduced memory pressure with sparse matrices. We compared the obtained 

numerical results from the implicit nonlinear FEA of simply supported RC beams 

using the constitutive and GPR material models to verify if the ML material model 

could be effectively used. Moreover, to verify the efficiency of the proposed solution 

procedures, comparisons with and without acceleration were performed to 

demonstrate the necessity for the adoption of a GPU in analyzing the nonlinear 

behavior of large structures discretized with numerous finite elements with a 

complicated material model, and then the entire implicit static layered beam solution 

procedure from the construction of the element stiffness matrix to the internal force 

determination was vectorized, optimized for modern computers, accelerated with the 

GPU, and reduced the memory pressure with sparse matrices. We compared the 

obtained numerical results from the implicit nonlinear FEA of simply supported RC 

beams using the constitutive and GPR material models to verify if the ML material 

model could be effectively used. Moreover, to verify the efficiency of the proposed 

solution procedures, comparisons with and without acceleration were performed to 

demonstrate the necessity for adopting a GPU in analyzing the nonlinear behavior of 

large structures discretized with numerous finite elements with a complicated material 

model. 
 

2  Methods 
 

 
Figure 1: Conventional nonlinear analysis flowchart 

 

To exactly analyze the improvement in the subprocess performance, we divided the 

whole solution procedure into three major categories, as shown in Figure 1. The first 

one is the ‘assemble’ category, which covers the solution procedure from reading the 

input file to the construction of the global stiffness matrix and global load vector. The 
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second one is the ‘solve’ category, in which solving the constructed equilibrium 

equation is performed and the nodal displacements are determined. Since this solving 

subprocess accounts for most of the solution procedure, it can be one of the significant 

bottleneck points from the time consumption aspect. Performing the Gaussian 

elimination [10] on a 𝑛 𝑥 𝑛 matrix requires time complexity of 𝑂(𝑛3), which means 

bit complexity will grow exponentially [11]. The last category is the ‘internal force’ 

category, where the stresses and strains corresponding to the determined deformations 

are calculated. Despite relatively simple operations, re-evaluating the neutral axis in 

a section with the trial-and-error method causes another bottleneck in computation 

time. Beyond the three major categories, the evaluation of residual forces and 

additional iterations are followed up to converge results in the nonlinear analysis. We 

designed an improved approach to reduce computation time for these solution 

procedures. Different from a typical Gaussian elimination procedure which performs 

the time-consuming processes of updating the global stiffness matrix into an upper 

diagonal matrix and the succeeding back substitution sequence in each iteration to 

obtain the solution of the equation, the designed approach only determines the 

reduction factors from Gaussian elimination once and is used consistently in the 

following iterations unless the stiffness remains the same. Only the one-dimensional 

load vector is updated without updating the global stiffness matrix in every iteration 

procedure. Then, back substitution over the same stiffness matrix with an updated 

load vector is performed, which means the reduction factors determined from the 

previous iteration can be used again, and the amount of computing is drastically 

reduced. The computational cost-saving effect comes from not updating the global 

stiffness matrix, which is enlarged with an increase in the size of the stiffness matrix. 

However, despite these efforts, this heavily sequential structure is unsuitable for GPU 

acceleration, and vectorizing revision is necessary. 

 

 
Figure 2: Vectorized nonlinear analysis flowchart 
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The overall configuration for the vectorized code structure is described in Figure 2. 

As can be seen by comparing it with Figure 1, the major change is made in the ‘solve’ 

category to maximize the efficiency of performance in the solution procedure. Instead 

of following the conventional Gaussian elimination procedure, the solution procedure 

is reconstructed with the use of the sparse solver, which is based on the cuSOLVER’s 

CSRLSVQR routine, which is based on QR decomposition which is numerically more 

stable than the direct matrix inverse. Unfortunately, however, the cuSOLVER is 

proprietary software, so the source code for that library is not available. The CSR 

sparse matrix significantly reduces the operation required for the solution procedure. 

Furthermore, the entire code is rewritten in CuPy and changed to optimize the 

procedure for the GPU, using the broadcast functionality and vectorizing technique. 

Using the GPU takes additional time to transfer the information from the CPU to the 

GPU and then return the result to the CPU again. In these processes, two processing 

units are synchronized and wait until the execution inside one of the processing units 

finishes. That means that even the latest and fastest GPU can cause unexpectedly 

worse performance. Accordingly, to overcome this problem and improve the 

evaluation efficiency, the vectorized program in this paper stores all the variables 

required to perform an analysis in dedicated GPU memory from the beginning, and 

the numerical operation is conducted with the GPU exclusively while keeping the 

CPU to only control the flow of the process. 

Converting into the vectorized analysis process, the broadcasting technique, which is 

the key to vectorizing and saving memory space for array operations, is implemented 

because it can remove the loop in the sequential structure without making needless 

copies of data [12]. The use of the broadcasting technique makes it possible to 

automatically expand the variable into a higher dimensional data structure without 

any initialization of the memory space [12], [13], and it will be a significant advantage 

in analyzing RC beams in which an RC section is discretized with multiple elements 

and layers of concrete and steel. Even in the overall vectorized analysis process, 

however, the iteration process to increase the load level and to check the convergence 

still needs to be performed with the implicit nonlinear analysis. Since the other 

bottleneck in the analysis procedure is on the ‘internal force’ category for the 

calculation of the stresses and strains, the related subprocess needs to be optimized 

for the GPU implementation because the GPR model used in this study was based on 

the PyTorch library which can seamlessly communicate between CuPy libraries using 

the DLPack. 

In these solution procedures, the biggest difference in the modified solution procedure 

is in evaluating internal stresses. Unlike the conventional constitutive material 

models, the adoption of the machine learning material model drastically increases 

computing time, and repeated queries in finding the stress corresponding the 

considered strain will increase the total time consumption. Since much computing 

time is induced from moving the data back and forth between the CPU and GPU and 

waiting for the devices to synchronize rather than calculating the prediction value 

itself, the process to determine the neutral axis is modified for the GPU to resolve this 

bottleneck in the solution procedure. Owing to KeOps[14], loading the training data 

into the GPU does not require a lot of memory space, and quite a lot of test data can 

also be sent to the GPU. That means that many possible neutral axis candidates in an 
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RC section can be prepared and queried simultaneously. Then the strains 

corresponding to each neutral axis are calculated, and the stresses corresponding to 

the strains can be queried at once. Since the neutral axis is the base used to determine 

the strains at each layer in an element, the calculation number of strains will increase 

in proportion to the number of possible neutral axis candidates considered while 

increasing the size of the corresponding stress matrix. All the matrix operations related 

to an increase and/or decrease in matrix size are performed on the basis of the 

broadcasting technique [13] by passing the appropriate indexing information into a 

lower dimensional matrix. A simple explanation for the difference between the two 

methods is that the conventional method evaluates only a single neutral axis candidate 

at each iteration, but the revised method evaluates multiple neutral axes at each 

iteration. 
Beam 𝑬𝒄 (𝑴𝑷𝒂) 𝑬𝒔 (𝑴𝑷𝒂) 𝒇𝒄 (𝑴𝑷𝒂) 𝒇𝒚 (𝑴𝑷𝒂) 𝝆 (

𝑨𝒔
𝒃𝒅⁄ ) 

T1MA 26,632.8 194,571 31.7343 371.382 0.0062 

J4 26,201.2 203,404 33.3426 309.596 0.0099 
Note: 𝑬𝒄 and 𝑬𝒔=the modulus of elasticity of concrete and steel, 𝒇𝒄=the compressive strength of concrete, 𝒇𝒚=the yield 

strength of steel 

Table 1: Material properties for T1MA and J4 beam 

 

To analyze the impact of adopting ML based material model, simple GPR based 

monotonic uniaxial stress – strain material model for concrete and steel is defined. 

The constitution of a GPR-based material model requires the generation of a synthetic 

experimental dataset because the real experimental dataset for the considered structure 

was not sufficiently available. If many real or related experimental datasets for the 

considered material are secured, then a synthetic experimental dataset does not need 

to be generated. Without exception, however, since no supplementary experiments to 

determine the stress-strain relations of concrete and steel which were used in the select 

beams were performed, we generated synthetic experimental datasets in this study 

based on the conventional stress-strain relations of the modified Kent and Park model 

for concrete [15] and the simple bilinear model which has been proven to be accurate 

enough by multiple studies on steel [16], [17]. These models are the most 

representative relations popularly used in nonlinear analyses and are presented in 

Figure 3 and Figure 4. More details for the expression of the stress-strain relations can 

be found elsewhere [15], [16], [18]. 

 

  
(a) (b) 

Figure 3: Uniaxial concrete stress – strain material model 
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Figure 4: Uniaxial steel stress – strain material model 

 

In constructing GPR-based stress-strain relations of concrete and steel, the material 

properties of RC beams of T1MA [19], [20], and J4 [21], which were analyzed in this 

study, need to be defined. The material properties given in Table 1 were directly 

determined from the experiments and served as the major parameters in constructing 

the stress-strain relations, which means that these major parameters for the 

constitutive model were randomly adjusted during the dataset generation for the GPR 

model. The random distribution followed the Gaussian distribution with the given 

parameters as the average values and one-tenth of the mean value as the standard 

deviation. Because of insufficient experimental data, furthermore, we also assumed 

the given parameters were independent of each other, and the value of standard 

deviation was arbitrary. The primary reason for the construction of a dataset for each 

parameter was to maximize the probability of the GPR model corresponding to the 

constitutive model. Thirty cases of the stress-strain relation composed of 200 data 

points were generated for each material, and the number of these data points, which 

can deliver an accurate description of the stress-strain relation, was determined 

through several repeated trials with a change in the number of cases and the number 

of data points. One of the main reasons for generating this limited amount of synthetic 

data is due to the limitation of the memory of the GPU. Since the Gaussian process 

regressor requires the training data to make a prediction, available memory spaces for 

both training data and test data need to be prepared in the prediction phase of the 

nonlinear finite element analysis process. 

 

  
(a) (b) 

Figure 5: Training result for concrete: (a) T1MA, (b) J4 
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(a) T1MA (b) J4 

Figure 6 Training result for steel: (a) T1MA, (b) J4 

 

Beam 𝜺𝒄𝟎 𝒇𝒄′ (𝑴𝑷𝒂) 𝜺𝒄𝒓 𝒇𝒕′ (𝑴𝑷𝒂) 𝜺𝒚 𝒇𝒚 (𝑴𝑷𝒂) 

T1MA -1.972x10-3 -31.42 2.049 x10-4 2.139 2.872 x10-3 331.1 

J4 -1.968 x10-3 -32.93 2.049 x10-4 2.208 2.713 x10-3 324.7 

Table 1: Metrics in GPR material model 

 

Figure 5 and Figure 6 represent the GPR concrete and steel stress-strain relations 

constructed on the basis of the mean value, and the obtained major metrics are listed 

in Table 2Table 1. Due to the prediction structure of the GPR material model to 

minimize the computational load, there is some difference in predicting the ultimate 

strain 𝜺𝒄𝒖, as shown in Figure 5. Different from the constitutive concrete model in 

Figure 3 which assumes the maintenance of the resistance even after the ultimate 

strain is reached, the machine learning model in Figure 5 assumes that concrete 

completely loses its strength at the ultimate strain. In conclusion, the GPR concrete 

and steel stress-strain relations almost coincide with the constitutive models in the 

entire strain range, despite a slight difference in the compressive and tensile strength 

of concrete and the yield strength of steel. The calculation of the quality metric for 

both concrete and steel is limited to the specific bound of the region of interest. For 

the concrete, R2 was 0.7859 for T1MA and 0.7864 for J4, and RMSE was 5.490 for 

T1MA and 5.751 for J4. It may seem very poor quality compared to a typical criterion, 

but this large difference between the models came from the stress response after the 

ultimate strain. If the calculation is limited to the non-zero stress area, the quality 

metric rises up to the point where the GPR model is exchangeable with the constitutive 

model; the value is noted in Figure 5. 
 

3  Results 
 

To compare the efficiency of adopting the machine learning material models of 

concrete and steel upon the GPU-based solution procedure, we selected two RC 

beams, T1MA [19] and J4 [21], because these RC beams have been popularly chosen 

in the classical nonlinear analyses of RC structures to verify the exactness of the 

introduced numerical models. We describe the different material properties of a 

concrete matrix and embedded reinforcements based on a layer model that divides an 

RC section into a finite number of imaginary layers. We considered 18 layers and 
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assigned the third layer to steel reinforcement. Figure 7 represents the configurations 

and loading conditions for T1MA and J4, respectively. Since it is well known that the 

average crack spacing is generally three times the concrete cover thickness [22] and 

an element length of less than the crack spacing does not improve the numerical result 

anymore, despite an increase in the number of elements [22], the maximum number 

of beam elements used in the numerical analyses is limited to 3840 with equal length. 

To compare the calculation time spent in the nonlinear analysis with the change in the 

number of elements, the two specimens are discretized with 60 to 3840 elements, 

double the number of elements. 

 

 

  

(a) (b) 

Figure 7: Specifications of beams: (a) T1MA beam, (b) J4 beam 

 

 

Figure 8 compares the numerical results and the experimental data at the midspan of 

the RC beams. As shown in this figure, both material models, the machine learning 

material model, and the constitutive material model, effectively trace the RC beams' 

nonlinear behavior from the concrete cracking to the yielding of the steel. The initial 

discrepancy between the analysis and the experiment in T1MA stems from the fact 

that the specimen was probably extensively cracked before loading or the very small 

elastic displacement was inaccurately measured because the initial slope in the 

experimental data shows a difference from the elastic behavior before cracking. A 

slightly larger estimation of the yield strength using the machine learning material 

model was induced from the derived stress-strain relations of steel in Figure 6 which 

include the upper and lower yield strengths. Since these specimens are under-

reinforced, the structural responses, including the yield strength, are dominantly 

governed by the stress-strain relation of steel. T1MA is more dominantly affected by 

the yield strength of steel because one-third of the center in the span will broadly be 

subjected to steel yielding. Even though the use of the machine learning material 

models of concrete and steel results in a 2.28% higher yield load and a 1.55% lower 

ultimate load from the experimental data, as shown in Figure 8(a), the entire prediction 

for the nonlinear behavior of the two specimens is still satisfactory. 
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(a) (b) 

Figure 8: Load-Displacement Diagram of Beams with Two Different Material 

Models: (a) T1MA, (b) J4 

 

In parallel with the adoption of the machine learning material model, we also 

implemented the GPU-accelerated vectorized solution procedure and examined its 

effectiveness through a comparison of the time taken in the solution procedure. 

Calculation of the total time was based on the average of three times because the 

computing time can be affected by the ambient temperature [23], as the heat 

dissipating performance of the computing system is affected by the ambient 

temperature and the total load is divided by 12 and 15 for T1MA and J4, respectively. 

Figure 9 presents the total time spent by the processing unit. The benchmark case 

(CASE A) is based on the vectorized CPU-based solution procedure with the 

conventional constitutive material model. Since the comparison of CASE A with 

CASE B shows that only the adoption of the GPR material model without GPU 

acceleration drastically increases the total time consumption, we can infer that this 

large jump of total time consumption comes from the increase in the computational 

cost of the GPR material model compared to the constitutive material model. In Figure 

9, a sudden increase in time in the GPU processing (CASE B) is due to the memory 

allocation unit size configuration inside the program, which can degrade or improve 

the performance degradation and is limited to the graphics hardware memory size and 

bandwidth. However, adopting the GPU acceleration with the GPR material model 

(CASE C) alleviates the total time consumption again. It represents almost the same 

time consumption as that of CASE A. The accelerated case, the revised solution 

procedure with the GPR material model with GPU acceleration, clearly shows a 

performance improvement over the case without acceleration. CASE C is also 

expected to be more effective than CASE A in the nonlinear structural analyses of 

large structures discretized with multitudinous finite elements (see the crossing point 

between CASE A and CASE C in Figure 9). Moreover, as can be observed in Figure 

9, the deviation of total time consumption in CASE B ranges from 29.91 to 1081.71, 

but it is reduced to a range from 0.58 to 42.02 in CASE C. The significantly lower 

deviation leads to the applicability of the accelerated solution procedure to the 
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structural analysis with many elements and a large degree of freedom without 

worrying about the uncertainty of an unexpectedly longer time consumption of the 

program. Overall, the accelerated solution procedure had 2.93 to 6.08 times faster 

processing speed than the case without an acceleration solution procedure, and we 

concluded that the adoption of the GPR material model must be based on the use of 

the GPU acceleration. 

 

 

  
(a) (b) 

Figure 9: Total time consumption by processing Unit: (a) T1MA, (b) J4 

 
   Case A: Conventional constitutive material model without GPU acceleration 

   Case B: GPR material model without GPU acceleration 

   Case C: GPR material model with GPU acceleration 
 

 

 

4  Conclusions and Contributions 
 

This paper introduced an improved solution procedure that can effectively be used to 

trace the nonlinear behavior of large RC structures composed of numerous RC 

members. Use of the GPR-based material model can compensate for the roughness in 

the conventional constitutive material models induced from a limited amount of 

experimental data and still have the flexibility for supplementation of additional 

experimental data, but an increase in computational cost and an increase in the total 

time consumption of numerical analysis is the drawback of the GPR based material 

model and make it difficult to apply it to large RC structures. We implemented the 

graphics processing unit (GPU) acceleration to overcome the limitation of the GPR-

based material model and updated the solution procedure to optimize the GPU process 

by adopting vectorizing and broadcasting while maintaining the entire analysis 

process inside the GPU. All the introduced solution procedures were integrated and 

finally represented as the data-driven Python-based GPU-accelerated FEA program. 
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