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Abstract

In this paper, we propose a computational framework capable of addressing the chal-
lenges of material softening and strain localization in spatial frame-like structures.
By following an alternative non-local approach and the method of embedded strong
discontinuity within the original velocity-based finite element formulation, we enable
the framework to identify critical load levels and critical cross-sections accurately and
describe the phenomenon of strain localisation effectively. The strong discontinuity-
based approach involves introducing additional jump-like variables at the level of in-
terpolated velocities and angular velocities. These variables are governed by addi-
tional equilibrium equations at the critical cross-section, derived using the weighted
residual method. Our methodology is effective for both quasi-static and dynamic anal-
ysis. The numerical examples demonstrate the effectiveness and robustness of the
proposed methodologies while also showing a comparison of results between the two
approaches within the same underlying beam formulation.

Keywords: strong discontinuity, material softening, post-critical analysis, strain lo-
calisation, statics and dynamics, three-dimensional rotations.
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1 Introduction

In recent years, the importance of analyzing the structural response of spatial frame-
like structures under severe static and dynamic loading beyond the material strength
threshold has been emphasized, as material-induced localized failure is a very com-
plex phenomenon. This failure process is often preceded by a decrease in mechanical
resistance with increasing deformation, commonly referred to as softening, and is
often found in brittle heterogeneous materials such as reinforced concrete. This phe-
nomenon leads to a loss of uniqueness of cross-sectional constitutive equations and
loss of ellipticity/hyperbolicity of equilibrium equations. One important consequence
of strain softening is the localization of strains and rapid jumps in the displacement
field. If not appropriately modeled, the numerical solution procedure often leads to a
loss of convergence at the critical load level and mesh-dependent post-peak responses.

In the present work, we demonstrate the phenomenon of softening and localization
of strains within spatial frame-like structures using two different approaches. In the
first approach, we use an alternative non-local method where the strains are assumed to
be concentrated within the entire finite element of short length rather than at a point.
This approach is simple and effective, capable of simulating the softening response
while resolving strain localization at critical cross-sections using short, lower-order
elements. The second approach follows the idea of embedded discontinuity, where
the primary interpolated variables are enhanced to describe localized strains as point-
wise peak-like distributions.

These methodologies are implemented within geometrically exact spatial beam fi-
nite elements, where the tangent space of the non-linear configuration space is spanned
using only additive quantities, which are velocities in the fixed basis and angular ve-
locities in the local basis. We demonstrate the efficiency of both approaches through
a demanding numerical example with a detailed comparison.

2 Mathematical model

The geometry of a three-dimensional beam is represented by a line of centroids and
a family of cross sections, see Figure 1. The line of centroids is a spatial curve at
an arbitrary time t ≥ 0 defined by a position vector

⇀
r (x, t) and parametrized by an

arc-length parameter x ∈ [0, L] at any fixed time t. Two orthogonal reference frames
are introduced for the description of the quantities of the beam: (i) a fixed orthogonal
basis represented by {⇀g 1,

⇀
g 2,

⇀
g 3} at the reference point O and (ii) local orthogonal

base vectors {
⇀

G1,
⇀

G2,
⇀

G3}. A transformation from the local basis to the fixed one is
described in terms of quaternion algebra as:

⇀

Gi (x, t) = q̂ (x, t) ◦ ⇀
g i ◦ q̂∗ (x, t) , (1)

where q̂ is a rotational quaternion, q̂∗ is its conjugate, and (◦) denotes the quaternion
product.
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Figure 1: Configuration of a three dimensional beam at an arbitrary time t.

The equations of a quaternion-based three dimensional beam within the framework
of velocity-based formulation together with the discretization procedure are presented
in [1] while for the formulation consistent post-critical analysis using path-following
approach, the reader is addressed to [2] and the discussion therein. In the present
paper, we focus on the phenomenon of strain softening and modelling the localisation
of strains.

2.1 Equations of a three-dimensional beam

In this section, we briefly outline the governing equations of a three-dimensional beam
in terms of quaternion algebra. For more details, the reader is directed to [1]. The set
of continuous governing equations for a three-dimensional beam consists of kinematic
equations (2)-(7), constitutive equations (8)-(9), and equilibrium equations (10)-(11):

Γ = q̂∗ ◦ r′ ◦ q̂ + Γ 0 , (2)
K = 2q̂∗ ◦ q̂′ +K0 , (3)
v = ṙ, (4)

Ω = 2q̂∗ ◦ ˙̂q, (5)

Γ̇ = q̂∗ ◦ v′ ◦ q̂ + (Γ − Γ 0 )×Ω , (6)

K̇ = Ω ′ +K ×Ω . (7)
N = CN (Γ ,K) , (8)
M = CM (Γ ,K) , (9)
n′ + ñ = ρAv̇, (10)

M ′ +K ×M + (Γ − Γ 0 )×N + q̂∗ ◦ m̃ ◦ q̂ = Ω × JρΩ + JρΩ̇ , (11)

where the prime (′) denotes the derivative with respect to the arc-length parameter x
and the dot over symbol (·) denotes the derivative with respect to time t. The vector
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quantities expressed in fixed basis are denoted with lower case letters while the ones
in the local basis are denoted with upper case letters. In the above equations,

Γ represents the vector of translational strains (Γ1 is the extensional strain, Γ2

and Γ3 are the shear strains);

K represents the vector of rotational strains (K1 is the torsional strain, K2 and
K3 are the bending strains);

r and q̂ represent position vector and rotational quaternion, respectively;

Γ 0 and K0 are the variational constants derived from the known position vec-
tors, strains and rotations at the initial configuration;

v is the velocity vector and Ω is the vector of angular velocity;

N and M are the vectors of stress-resultant forces and moments of the cross-
section;

CN and CM are operators describing the material of the beam;

ñ and m̃ are the vectors of external distributed forces and moments per unit
length of the undeformed beam;

ρ and Jρ represent mass density and mass moment of inertia of the cross-
section, respectively.

Equations (6)-(7) represent kinematic compatibility equations which directly relate
strains with velocities and angular velocities and therefore play an important role in
the present velocity-based approach [3]. Equations (10)-(11) are the linear and angular
momentum balance equations. Note that the balance of linear momentum of a beam is
expressed in fixed basis while the balance of angular momentum is expressed in local
basis. Consequently, the following boundary conditions that need to be satisfied by
the set of governing equations are also expressed according to the present choice of
bases:

n(0) + fe
0 = 0, (12)

n(L)− fe
L = 0, (13)

M (0) + q̂∗(0) ◦me
0 ◦ q̂(0) = 0, (14)

M (L)− q̂∗(L) ◦me
L ◦ q̂(L) = 0, (15)

where fe
0 , me

0 , fe
L and me

L are known external point forces and moments at the
boundaries of the beam element.
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2.2 Material nonlinearity

In the beam models stresses are replaced by stress-resultants and the consitutive equa-
tions are represented at the resultant level as shown in the equations (8)-(9). How-
ever, well established experimental techniques characterize material behaviour at the
continuum-based stress-strain level. In order to incorporate such constitutive behavior
we span the resultant strain measures over the cross-section according to the relation:

D (y, z) = Γ1 − yK3 + zK2, (16)

where D is the longitudinal strain, y and z are the local coordinates of the cross-section

defined by the base vectors
⇀

G2 and
⇀

G3 (see Figure 1). The longitudinal stress, σ(y, z)
at an arbitrary material fiber of the cross-section, can now be assumed to be a function
of the strain field:

σ(y, z) = F
(
D (y, z)

)
. (17)

The functional F in the above equation can be estimated from the uni-axial exper-
iments while many are already recommended in literature and engineering codes.
However, when examining the structural response using material models that incor-
porate a plastic regime, it becomes crucial to differentiate between elastic and plastic
deformations. This distinction is necessary to accurately account for irreversible plas-
tic strain during unloading. The Kuhn-Tucker unilateral constraint offers a convenient
formulation for loading and unloading in classical rate-independent plasticity. The
incremental form and the algorithmic implementation of the loading/unloading con-
ditions as presented in [4] was here properly extended to material models used. To
evaluate the resultant quantities, the stress field needs to be integrated over the cross-
sectional plane (y, z) while for shear and torsion, we assume linear relationship:

CN =

NC
1

NC
2

NC
3

 =

∫∫ σ(D) dy dz
GA2Γ2

GA3Γ3

 , (18)

CM =

MC
1

MC
2

MC
3

 =

 GJtK1∫∫
zσ(D) dy dz

−
∫∫

yσ(D) dy dz

 , (19)

where G is the shear modulus, A2 and A3 are effective shear areas and Jt is the tor-
sional moment of inertia. Taking the partial derivatives of equations (18)-(19) with
respect to the components of resultant strain measures, we get the constitutive tangent
matrix that reads:

C =

[
CΓΓ CΓK

CKΓ CKK

]
=

[
∂CN
∂Γ

∂CN
∂K

∂CM
∂Γ

∂CM
∂K

]
. (20)

The unique solution of equations (8) and (9) exists when the determinant of the Ja-
cobian matrix is not singular. As the deformation increases, the Jacobian matrix, C,
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approaches zero value at a specific cross-section, denoted by the coordinate xc. Upon
further deformation at this critical cross-section, the determinant of matrix C in the
post-critical stage turns negative, which is a typical characteristic of the softening
regime.

2.3 Numerical formulation

The governing equations of a three-dimensional beam are a set of nonlinear partial
differential equations that needs to be discretized in both time and space. The config-
uration space of the primary unknowns is crucial in any finite element formulation.
While standard configuration-based formulations (displacement and rotation-based
models) are convenient, their use has several limitations. For instance, the additive-
type interpolation for rotational parameters is simple but fundamentally contradicts
the configuration space of spatial rotations, which is multiplicative.

To avoid the need for special adaptations of integration schemes or interpolation
procedures for the rotational degrees of freedom, we leverage the additive nature of
the angular velocities when expressed in the local basis. This allows us to employ
standard additive-type enhancements and standard interpolation in Euclidean vec-
tor spaces directly. This choice significantly reduces computational complexity and
avoids introducing any inconsistencies. For the translational degrees of freedom, us-
ing velocities in the fixed basis is a natural choice. Finally the chosen approximations
of both translational and rotational parameters that are consistent with the properties
of the configuration space read:

v(x, t) =

p∑
i=1

Pi(x)vi(t), (21a)

Ω(x, t) =

p∑
i=1

Pi(x)Ω i(t). (21b)

We here choose Lagrange interpolation functions with the nodes taken equidistantly
from the interval [0, L].

2.4 Enhanced interpolation

At the onset of localization at the critical cross-section xc, the above velocity and
angular velocity fields (21a)-(21b) are enriched with a unit step function at the critical
cross-section xc multiplied by velocity and angular velocity jumps ∆v and ∆Ω :

v(x, t) =

p∑
i=1

Pi(x)vi(t) +

(
H(x− xc)−

∑
j

Pj(x)

)
∆v(t), (22a)

Ω(x, t) =

p∑
i=1

Pi(x)Ω i(t) +

(
H(x− xc)−

∑
j

Pj(x)

)
∆Ω(t). (22b)
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Here, H(x− xc) is the Heaviside step function defined as:

Hc = H(x− xc) =

{
0, x < xc,

1, x ≥ xc.

It can be observed from (6)-(7) that the description of translational and rotational
strains directly involves the derivatives of velocities and angular velocities at midtime.
They can be directly expressed by differentiating the assumed velocity and angular
velocity in equations (22a)-(22b):

v′(x) =

p∑
i=1

P ′
i (x)vi +

(
δc(x)−

∑
j

P ′
j(x)

)
∆v, (23a)

Ω ′(x) =

p∑
i=1

P ′
i (x)Ω i +

(
δc(x)−

∑
j

P ′
j(x)

)
∆Ω , (23b)

where, δc(x) is the Dirac delta function (distribution) and will here serve as a general-
ized function that allows us to overcome problems with singularities of the derivatives
at the critical point. The time discretization is according to midpoint rule and the spa-
tial discretization follows Galerkin finite element method. For the sake of brevity, we
present here the final discretized equations of motion however, for a comprehensive
understanding, the reader is addressed to [1]. The final discretized governing equa-
tions read:

∫ L

0

[
ρA

h

(
v[n+1] − v[n]

)
Pi + P ′

in
[n+1/2] − Piñ

[n+1/2]

]
dx− ef

[n+1/2]
i = 0, (24)∫ L

0

[
Jρ

h

(
Ω [n+1] −Ω [n]

)
Pi +M [n+1/2]P ′

i −K [n+1/2] ×M [n+1/2]Pi

+Ω [n+1/2] × JρΩ
[n+1/2]Pi −

(
Γ [n+1/2] − Γ 0

)
×N [n+1/2]Pi

−
(
q̂∗[n+1/2] ◦ m̃[n+1/2] ◦ q̂[n+1/2]

)
Pi

]
dx− eM

[n+1/2]
i = 0,

(25)

∫ L

xc

[
ρA

h

(
v[n+1] − v[n]

)
− ñ[n+1/2]

]
dx + n(xc)

[n+1/2] − n(L)[n+1/2]

−
∫ L

0

[(
ρA

h

(
v[n+1] − v[n]

)
− ñ[n+1/2]

)∑
j

Pj +
∑
j

P ′
jn

[n+1/2]

]
dx

+
∑
j

Pj(L)n(L)
[n+1/2] −

∑
j

Pj(0)n(0)
[n+1/2] = 0,

(26)
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∫ L

xc

[
Jρ

h

(
Ω [n+1] −Ω [n]

)
+Ω [n+1/2] × JρΩ

[n+1/2] −K [n+1/2] ×M [n+1/2]

−
(
Γ [n+1/2] − Γ 0

)
×N [n+1/2] − q̂∗[n+1/2] ◦ m̃[n+1/2] ◦ q̂[n+1/2]

]
dx

−

{∫ L

0

[
Jρ

h

(
Ω [n+1] −Ω [n]

)∑
j

Pj −
(
Γ [n+1/2] − Γ 0

)
×N [n+1/2]

∑
j

Pj

−q̂∗[n+1/2] ◦ m̃[n+1/2] ◦ q̂[n+1/2]
∑
j

Pj +Ω [n+1/2] × JρΩ
[n+1/2]

∑
j

Pj

−K [n+1/2] ×M [n+1/2]
∑
j

Pj +M [n+1/2]
∑
j

P ′
j

]
dx

}
+M (xc)

[n+1/2]

−M (L)[n+1/2] +
∑
j

Pj(L)M(L)[n+1/2] −
∑
j

Pj(0)M(0)[n+1/2] = 0.

(27)

where ef
[n+1/2]
i and eM

[n+1/2]
i are evaluated as:

ef
[n+1/2]
i =


fe

0 (tn+1/2), i = 1

fe
L(tn+1/2), i = p

0, otherwise

eM
[n+1/2]
i =


q̂∗[n+1/2] ◦me

0 (tn+1/2) ◦ q̂[n+1/2], i = 1

q̂∗[n+1/2] ◦me
L(tn+1/2) ◦ q̂[n+1/2], i = p

0, otherwise.

Since the set of discrete equations (24)-(27) is nonlinear, they are solved iteratively
using the Newton-Raphson method. The linearization required due to the presence of
rotational degrees of freedom is straightforward and has therefore been omitted here.
One of the crucial aspect within the method of embedded discontinuities is to suitably
approximate the Dirac-delta distribution that appears in the equations (23a)-(23b). The
assumption here follows,

δc(xi) = δ(xi − xc) =

{
1
hc
, xi = xc,

0, otherwise,
(28)

where hc is a material parameter.

3 Numerical example: Cranston’s frame

In this example, a hinged planar reinforced concrete frame is subjected to symmetric
loading. The frame’s geometric and cross-sectional data can be found in Figure 2.
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This particular frame was experimentally tested by Cranston [5], and serves here for
validation.

Figure 2: Cranston’s portal frame: geometry.

Figure 3: Cranston’s portal frame: Mesh for non-local and embedded discontinuity
approach (nodes are marked with red circles).

The constitutive relationship for concrete here follows the model of Desayi and
Krishnan [7] with additional considerations for tensile behavior as provided by Bergan
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and Holland [6]. The analytical relation reads:

σ(D) =


0, D ≤ Dcu

2fcm|D1| D
D2+D2

1
, Dcu < D ≤ Dr

fct
Dr−Dm

(D −Dm), Dr < D ≤ Dm

0, Dm < D.

(29)

The behavior of reinforcing steel in tension and compression is described as:

σs(D) =


EsD, |D| ≤ Dy1

(fy + Ep(|D| −Dy1))sign(D), Dy1 < |D| ≤ Dy2

(fy + Ep(Dy2 −Dy1))sign(D)
(
1− |D|−Dy2

Dyu−Dy2

)
, Dy2 < |D| ≤ Dyu

0, |D| > Dyu.

(30)

The material parameters used in the present analysis are: fcm = 3.65 kN/cm2, fy =
29.3 kN/cm2, Ecm = 3180 kN/cm2, Es = 18000 kN/cm2, Ep = 200 kN/cm2,
G = 1312.5 kN/cm2, Dcu = −0.05, D1 = −0.0022, Dr = 5.5×10−5, Dm = 7×10−4,
Dy2 = 0.01, Dyu = 1.0. The tensile strength (fct) in equation (29) is calculated using
the following relation: fct = (2fcm|Dr|)D/ (D2

r +D2
1). The results obtained using

both non-local and embedded discontinuities approaches are presented here. For the
non-local approach, a mesh of 32 quadratic elements was used, while cubic elements
were used for the method of embedded discontinuities. To account for the sudden
change in the number of reinforcement bars between T1 and T5, shorter elements were
used to model the horizontal section. The mesh for both methods is illustrated in Fig-
ure 3. Cross-sectional integrals were evaluated using 100× 100 Gaussian points. The
width of the localization zone was set to hc = 4 cm, and for the non-local approach,
short elements of the same length were employed near potential critical cross-sections,
as shown in Figure 3. One of the important issue in analysing the structural response
at the onset of material softening is to overcome the global singularity. Path-following
constraint described in [2] can be directly employed within the present formulation to
overcome this issue. However, in the present analysis, the mass matrix is conveniently
considered and thus circumvents the singularity of the global system and eliminates
the need for any additional constraint.

Figure 4: Prescribed velocities at T2 and T4 (see Figure 4).
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The frame is subjected to vertical forces as shown in Figure 2. However, the present
dynamic formulation allows to enforce velocities at the position of applied forces (T2

and T4) and follow a dynamic response of the frame as an alternative. The material
density is taken to be ρ = 2200 kg/m3. The vertical displacements are enforced
with three different rates: (i) 0.01 cm/s, (ii) 0.1 cm/s, (iii) 1 cm/s. For the present
results constant velocities were prescribed at T2 and T4 (see Figure 4) resulting in
linear displacements at the same nodes. The results were calculated until a vertical
displacement of 6 cm was reached at the mid span T3. The load factor is here estimated
from the differences of shear forces at the nodes where the velocities are enforced.
In the present analysis, softening initiates at the cross-sections T1, T2 and T5. The
obtained load-displacement responses are shown in the Figure 5(a) and are compared
to the experimental results as well as the result obtained using the path-constraint
(black solid line). We can observe that the pre-critical response is similar for all three
cases. As expected, the slower velocity results are closer to the quasi-static response,
while the post-critical response shows a significant reduction in load-bearing capacity
and slower initiation of horizontal displacements with increasing velocity (see Figure
5(b)).

Figure 5: Influence of displacement rate: (a) Load factor vs. vertical displacements at
T3; (b) horizontal vs. vertical displacements at T3.
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Figure 6: Comparison between non-local and embedded discontinuity approach:
(a,c,e) Load factor vs. vertical displacements at T3; (b,d,f) horizontal vs.
vertical displacements at T3.
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Figure 7: Comparison of longitudinal and bending strain distributions between non-
local and embedded discontinuity approach at 6 cm deflection of mid-span
T3.

Furthermore, the comparison of results between the method of embedded disconti-
nuities and the non-local approach are shown in the Figures 6 and 7. It can be observed
from the load-displacement response (see Figure 6) that there is a significant differ-
ence in the post-critical regime for higher velocity between the two approaches. This
can be explained through the longitudinal and bending strain distribution along the
horizontal beam. The non-local approach under predicts the strains at the softened
cross-section T2 when compared to the method embedded discontinuities. It is ad-
ditionally interesting to observe that at higher velocity, the longitudinal and bending
strains at the cross-section T2 become significantly large when compared to the lower
velocities. Both approaches are able to describe the localisation of strains effectively.
While the non-local approach distribute the longitudinal and bending strains over the
entire element, the method of embedded discontinuities clearly describe the point-wise
localisation of strains at the softened cross-sections.

4 Conclusion

In the present work, the original velocity-based formulation is extended for the analy-
sis of material softening, introducing several conceptually unique characteristics. The
formulation employs velocities in a fixed basis and angular velocities in a local basis
as the only interpolated quantities along the length of a beam element. The introduced
additive-type enhancements are fully consistent with the properties of the configura-
tion space. In the non-local approach, strain localization is achieved by using short,
low-order elements, with strains concentrated within a finite but short length in the
neighborhood of critical cross-sections rather than at a point, meaning the localization
of strains solely depends on the length parameter. Meanwhile, the method of em-
bedded discontinuities describes the localization of strains as a point-wise peak-like
distribution, circumventing dependency on the mesh. Additionally, the mass matrix
directly enables overcoming the global singularity at the onset of material softening
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without the need for any additional constraints. The demonstrated numerical example
shows the effectiveness and robustness of the proposed approaches.
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