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Abstract 
 

In recent years, innovative computational methods for designing sustainable discrete 

element assemblies have gained attention, focusing on materials with low carbon 

footprints and environmentally friendly joinery methods. In particular, dry joints, used 

to assemble blocks without mortar, can perform minimal environmental impact as 

reduces material consumption as well as providing sustainable assembling and 

disassembly processes. 

This research introduces Joint Layout Design (JLD), a new 3D computational 

approach for modelling and assessing discrete element assemblies with complex-

shaped, non-planar interfaces. Unlike standard methods that consider blocks as rigid, 

JLD accounts for potential internal failures by considering finite internal material 

strengths in tensile and shear modes. The JLD method models potential failure planes 

within blocks using inner interfaces with a finite tensile and shear strength, while the 

contact among rigid blocks occurs on dry unilateral interfaces governed by a non-

associative Mohr-Coulomb friction law. The mechanical problem is framed as a limit 

analysis equilibrium problem and solved via interactive second-order cone 

programming. JLD analyses of 2D mechanical problems are proposed and validated 

to demonstrate its advantages and limitations, including an analysis of a flat arch 

inspired by Leonardo's arch, which is benchmarked against the distinct element 

method in 3DEC. 
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1  Introduction 
 

In recent years, there has been a growing interest in designing and manufacturing 

innovative and sustainable discrete element assemblies. These structures usually aim 

to use materials with a low carbon footprint, making masonry one of the most popular 

choices. Additionally, these assemblies benefit from being connected using 

environmentally friendly joinery methods. Among these methods, dry joints—where 

blocks are assembled without mortar—are ideal because of their minimal 

environmental impact.  

Finding the ideal joint layout within a discrete assembly has been a long-standing 

design challenge, resulting in a diverse range of bond patterns and stereotomy 

techniques throughout history. The dependency of structural behaviour on the joint 

layout, i.e. shape and location of the joints, has been widely acknowledged and 

explored in several recent studies, such as [1], which addressed the structural 

behaviour of different bond patterns, and [2], which examined various stereotomy 

methods and their impact on load-bearing capacities. However, it can be extensively 

observed that manufacturing and construction constraints have dominantly been 

prioritised over structural preferences in the discretisation of structures [3]. Following 

this trend, most research on contemporary architectural design has focused on 

addressing construction issues, such as simplifying fabrication by segmenting free 

forms into primitive and modular geometries [4]. 

These constraints are gradually being mitigated through digital manufacturing 

techniques, allowing us to fabricate entities with complex geometries more easily. 

One argument is that eliminating such construction-oriented limitations enables us to 

build structures as a whole, as seen with concrete printers. However, segmentation 

remains crucial for packing, transporting, and assembling structures [5], particularly 

in compact urban areas with limited construction space, distant locations, or 

challenging conditions such as constructing bridges over valleys or rivers. When 

materials like masonry are used, discretising the whole into smaller parts becomes 

more crucial due to their vulnerability to tensile fractures. Therefore, while 

segmentation of structures is necessary to facilitate construction, it is now possible to 

explore segmentation methods and joint layouts that maximise structural performance 

rather than focusing solely on achieving maximum modularity and planarity of block 

faces. This represents a new paradigm shift. However, it is important to note that 

construction-oriented concerns remain significant, particularly in mitigating 

environmental damage and reducing material waste caused by the Architecture 

Engineering Construction (AEC) sector. 

Masonry blocks with complex geometries can be fabricated using additive, 

subtractive, and formative methods [6]. Additive manufacturing, such as 3D printing, 

has enabled the creation of structures from materials like sand [7], earth [8], clay [9], 

and concrete [10]. However, the final product tends to be non-homogeneous since it 

is built layer by layer. Subtractive methods, like wire and blade cutting and robotic 

carving and milling [11], offer an alternative that results in homogeneous blocks. 
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Using digital stereotomy, these methods can cut relatively homogeneous natural 

materials like stones into complex geometries. However, material waste remains a 

significant challenge with these techniques. Formative methods, such as moulding 

masonry mortars [12, 13], allow for manufacturing homogeneous models with 

complex geometries and can relatively mitigate material waste, especially when 

moulds are reusable. However, this process is often time-consuming. 

Advances in manufacturing discrete masonry assemblies with complex geometries 

highlight the need for novel computer-aided design (CAD) frameworks that support 

designers in exploring the shapes of discrete structures during the early stages of 

design. Such computational efficiency cannot be achieved through methods like finite 

element (FE) and discrete element (DE) analyses. 

The analysis of discrete assemblies can achieve considerable computational 

efficiency through certain simplifications, as first proposed by Heyman with his three 

assumptions based on no-tensile strength, no-sliding and infinite compressive 

resistance [14]. While the Heyman assumptions were developed to general masonry 

constructions provided that rules of arts are followed, in [15], Livesey developed a 

limit state approach to apply limit analysis of assembly composed of rigid blocks 

considering also sliding among blocks. His method was then specialised into two main 

approaches, i.e., convex and concave contact models [16]. The convex approach 

abstracts a joint to a single point at its centre, while the concave approach assumes the 

contact among the blocks occurs over the vertices of the polygala interface describing 

the joint’s boundary. While both approaches were extended to analyse historic 

masonry buildings, the concave method has been recently adopted by Kao et al. [17] 

to design novel discrete assemblies with complex geometries, though the blocks are 

set as convex polyhedrons with planar faces. Kao et al. [18], later on, in 2022, used a 

concave formulation to analyse interlocking assemblies with arbitrary non-planar 

interfaces by abstracting the interface to numerous contact points distributed along the 

edges of the face. This framework, however, considered the blocks to be fully rigid. 

In contrast, Mousavian et al. [19] extended the concavity formulation to analyse 

assemblies composed of fracturable blocks with non-planar contact faces. The 

possibility of fracture becomes a crucial issue when dealing with blocks with concave 

polyhedral geometries, commonly seen in interlocking assemblies. Multi-surface 

plasticity [20] provides a solution by embedding the possibility of block fracture by 

introducing prescribed potential failure interfaces within the blocks, allowing for the 

possibility of cracking. This means that the entire assembly is modelled with two sets 

of potential discontinuities, each with different failure criteria: dry interfaces (joints 

between blocks) and inner interfaces within each block that may crack. The elements 

spanning these failure faces are still considered rigid. Portioli et al. [21] modelled 

conventional masonry walls constructed from cubic bricks arranged in a running bond 

pattern by adopting the convex approach. This model included inner interfaces along 

the vertical and horizontal symmetric axes and the diagonals of each block. The 

primary difference between the inner and dry interfaces was the inclusion of non-zero 

cohesion at the inner faces. 

The present research introduces a new 3D computational approach called Joint 

Layout Design (JLD) to model and assess discrete element assemblies with crackable 

blocks having complex-shaped faces, particularly non-planar ones. To develop this 
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model, standard equilibrium analysis is reformulated and extended to model inner 

interfaces with finite elastic tensile and shear-torsion strengths. While the specified 

flow rule at the inner interfaces automatically implies zero dilation, the heuristic 

procedure proposed by Gilbert et al. [22] is adopted in sequential programming to 

account for a non-associative Mohr-Coulomb law at the dry joints. The mechanical 

problem is modelled within the framework of limit analysis using a concave 

formulation and solved as second-order cone programming. Dual displacements are 

retrieved and then used to define the failure mechanism. Given a dense set of potential 

discontinuities that can act as either inner or dry faces, the JLD method allows the 

investigation of different combinations of inner and dry faces and, thus, explores 

several possibilities for segmenting a structure. Thus, JLD helps to explore the optimal 

combination of dry and inner faces corresponding to the maximum load-bearing 

capacity, as presented with simple examples by Mousavian and Casapulla [23]. 

The paper is structured as follows. Section 2 presents the JLD method and briefly 

introduces the distinct element method. Section 3 illustrates a few JLD analyses of 

simple but meaningful models, including a flat arch inspired by Leonardo that is 

validated against 3DEC V.7.0 [24]. Lastly, Section 4 outlines the main conclusions. 
 

2  Methods 
 

This Section introduces the JLD method (Section 2.1) and its mathematical 

programming formulation used to solve the limit-analysis problem. After that, Section 

2.2 provides a brief overview of the Distinct (Discrete) Element Method (DEM) and 

introduces 3DEC—software developed based on DEM principles used for 

benchmarking results obtained by JLD.  
 

2.1 JLD method 
 

This Section introduces the main features of the JLD method and its numerical 

implementation. In particular, Section 2.1.1 shows the datastructure adopted, while 

Section 2.1.2 illustrates its second-order cone programming formulation and the 

iterative iteration procedure implemented to exclude dilation. 
 

2.1.1  JLD datastructure  
 

An assembly can be thought of as composed of blocks that are in contact with each 

other on surfaces. These are called interfaces and are modelled through n-vertices 

polygons. The JLD method builds upon a graph-based datastructure G(V, E), where 

data of blocks are stored in the vertices set V, while geometrical and mechanical 

features of the interfaces in the graph’s edges set E [25, 26]. The JLD datastructure is 

illustrated with respect to the T-shaped block resting on a supporting red base, as 

depicted in  Figure 1a. Standard rigid block analysis (Figure 1b) models the T-shaped 

block as a single rigid block. At the same time, the datastructure comprises just one 

edge storing material and geometrical properties related to unilateral contact under the 

Mohr-Coulomb friction rule (black segment connecting the T-block’s and support’s 

centroids). The contact among the block occurs on a dry interface. To account for 

potential internal cracks, JLD discretises the T-shaped block into, e.g. four sub-blocks 
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in bilateral contact, characterised by finite compressive and tensile strength and a 

prescribed tangential capacity (Figure 1c). The contact among these blocks occurs on 

inner interfaces, shown as red edges in Figure 1. Therefore, this datastructure helps 

manage the JLD assembly, as illustrated in Figure 1c, which comprises five blocks 

and five interfaces. In particular, the datastructure accounts for four sub-blocks 

discretising the original T-shaped block, one support and four inner and one dry 

interfaces.  
 

 

Figure 1: JLD datastructure of a T-shaped block with supporting base: (a) single 

rigid block on support; (b) standard rigid block datastructure; (c) JLD datastructure 

considering four inner and one dry interface. 
 

The contact between two adjacent blocks is modelled using a convex formulation 

[16], which assumes that the interaction occurs at a single point. The internal forces 

transmitted through this point are represented by a system of forces composed of three 

forces and three torques along the main directions, applied to the interface’s contact 

point. In the present formulation, the contact point is assumed to coincide with the 

geometrical centre of the interface. Finally, each interface is associated with an 

orthonormal reference system with its origin in the interface’s geometrical centre, the 

third axis orthogonal to the interface and the first two lying on the interface. 
 

2.1.2  JLD numerical formulation  

  

Here is briefly illustrated the optimisation problem at the base of the JLD method 

with respect to a load-bearing capacity analysis where part of the external loads 𝐛λ 

are linearly incremented till the assembly reaches the collapse using the scale factor 

λ. The variables of the problem are represented by λ and the internal interface forces: 

 λ, 𝐍, 𝐕1, 𝐕2, 𝐌1, 𝐌2, 𝐌T, (1) 

where 𝐍 collects the interface normal force components, 𝐕1, 𝐕2 denote the interface 

tangential force components along the first and second axis, respectively; 𝐌1 and 𝐌2 

correspond to the interface torques with respect to the first and second interface axes, 

while 𝐌T collects the interface torque components. It is worth noting that the first and 

second axes refer to the interface's local reference system. With nintf being the total 

number of interfaces, which sums the number ndry of  dry  interfaces and the number 

ninner of inner interfaces, the dimension of each of these vectors is nintf. All these 

vectors are then stacked into the vector 𝐅, whose dimension is 6 nintf. The JLD 

B

(a) (b) (c)
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optimisation problem is formulated as the following second-order cone programming 

problem: 

Maximise λ  

s.t. 𝐀eq 𝐅 + 𝐀b 𝐛 + λ 𝐀bλ𝐛λ = 𝟎  

 𝐍min ≤ 𝐍  

 |𝐌1| ≤ 𝐌1,max (2) 

 |𝐌2| ≤ 𝐌2,max  

 √𝐕1
2 + 𝐕2

2 ≤ 𝐓max  

with: 

▪ λ the scale factor of the external incremental loads  𝐛λ; 
▪ 𝐅 the vector collecting the internal interface forces; 

▪ 𝐀b, 𝐀bλ the linear operators that apply the external loads 𝐛, 𝐛λ to the centroids 

of the corresponding blocks, respectively; 

▪ 𝐓max the vector collecting the interfaces’ shear capacity due to the Mohr-

Coulomb friction criterion (dry faces) or pure shear resistance (inner faces). 

The objective function (2)1 maximises the scale factor λ in the space of admissible 

internal stress states defined by the problem’s constraints, as detailed below.  Equation 

(2)2 ensures that the elements are in static equilibrium using the equilibrium matrix 

𝐀eq
⬚ . All remaining inequalities have to be read elementwise. In particular, inequalities 

(2)3 ensures that the normal interface forces have to be greater than 𝐍min, which 

collects the minimum value that the normal force can attain for each interface: 0 for 

dry interfaces and −σ𝑡 A for inner interfaces, with σ𝑡 being the absolute value of the 

tensile strength of the inner interface and A cross-section area. Similarly, inequalities 

(2)4-5 enforces that the absolute value of the bending moment has to be lower than the 

maximum bending moment the section can withstand, which can be expressed as: 

 𝐌1,max =
1

2
𝒍2𝐍 − 𝐣 ∗ (

1

3
𝒍2𝐍 −

1

6
𝛔𝑡𝒍2

2) ,  (3) 

 𝐌2,max =
1

2
𝒍1𝐍 − 𝐣 ∗ (

1

3
𝒍1𝐍 −

1

6
𝛔𝑡𝒍1

2) , (4) 

with 𝒍1 and 𝒍2 the two vectors collecting the interface dimensions along the first and 

second axis, respectively; 𝛔𝑡 the vector collecting the interface tensile strength and 𝐣 
a vector whose ith entry is zero if the corresponding interface is dry; otherwise, 1. 

Relation (2)5 is a second-order cone and ensures that the total shear has to be lower 

than the interface maximum shear capacity 𝐓max. In particular, referring to the kth 

interface and assuming it is dry, it reads: 

 

 Tmax,k = μN𝑘 −
1

cT,e
 |MT,eff,𝑘| , (5) 
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being μ the friction coefficient, while for an inner interface: 

 Tmax,k = T0,𝑘 −
1

cT,𝑘
 |MT,𝑘| . (6) 

Using the vector 𝐣, Equations (5-6) can be combined as: 

 √V1,𝑘
2 + V2,𝑘

2 ≤ (j𝑘 − 1) ∗ (μN𝑘 −
1

cT,e
 |MT,eff,𝑘|) + j𝑘 ∗ T0,𝑘 −

1

cT,𝑘
 |MT,𝑘| , (7) 

being j𝑘 equal to 1 if inner and 0 if dry. It is worth noting that if the assembly counts 

nintf the JLD formulation considers 2nintf second-order cones because of the absolute 

value present in (7). As mentioned, the plastic behaviour of a dry joint can result in 

the distribution of stresses on only a portion of the dry face denoted as effective area 

[16]. The centroid of this area corresponds to the application point of the normal force 

on the dry face. The shear-torsion capacity of a dry joint with an effective area smaller 

than the total area of a dry joint is reduced to MT,eff,𝑘 which can be found as follows: 

 MT,e − MT − V1l2,e + V2l1,e = 0 . (8) 

The presence of dry interfaces where friction is treated with a Mohr-Coulomb criterion 

automatically implies that the solution to the limit analysis problem includes dilation 

whenever sliding is present. To avoid it, this work adopted the iterative procedure 

proposed by Gilbert et al. [22]. This procedure iteratively solves the equilibrium 

problem by relaxing the original cone to a quasi-cylinder (using a virtual cohesion and 

a negligible decreasing virtual friction angle) in the neighbourhood of the solution 

obtained from the previous step. The resulting flattened surface provides an 

equilibrium solution with zero dilatancy. The adopted yielding surface for inner 

interfaces is such that dilation is already prevented. Thus, when used, the iterative 

procedure applies only to dry interfaces. 
 

2.2 The discrete element method and 3DEC 
 

The Discrete Element Method (DEM) considers the simulated material or structure as 

a collection of separate solid bodies ("are typically referred to as discrete distinct 

elements"). DEM numerical techniques have to satisfy the following criteria: 

i. The model consists of finite-sized separate rigid or deformable bodies; 

ii. The elements can translate, rotate, and deform independently of each other; 

iii. The displacements can be large; 

iv. The occurrence of new contacts and the loss of existing contacts are 

automatically tracked together with the modifications of the contact system. 

The elements can, consequently, slide relative to one another, partly or completely 

separate from each other, and form new contacts if the large displacements cause the 

rearrangement of contact topology. Most DEM codes calculate the motion of the 

discrete elements with the help of an explicit or implicit time-stepping algorithm: 

Newton’s equations of motion are solved with the help of a time integration scheme 

(see [27] for more details). The commercial software package named 3DEC is widely 

used in engineering practice for numerical simulations of the mechanical behaviour 



8 

 

of blocky systems such as rock assemblies or masonry structures. Theoretical details 

on 3DEC can be found in [27, 28]. In this paper, 3DEC is used to model a discrete 

assembly as a set of individual masonry blocks consisting of a few perfectly rigid 

discrete elements glued together with cohesive "inner joints" resisting tension and 

shear in addition to compression. The masonry blocks, on the other hand, are in dry 

(i.e. compressive-frictional) contact with each other. both types of inner and dry 

contacts, the surfaces are subdivided into small sub-contracts. The mechanics of the 

Coulomb-slip dry joint as well as the inner cohesive contacts, are defined by the 

following mechanical properties: i) Normal and shear stiffnesses show the magnitude 

of the increment of surface-distributed contact force due to a unit increment in the 

relative translation in the sub-contact in the normal and tangential directions, 

respectively; ii) Strength values include tensile strength and cohesion. The tensile 

strength is the maximum possible surface-distributed joint force that the sub-contact 

can carry in the tensile direction; when reaching this value, the sub-contact breaks due 

to tension. Cohesion instead specifies the maximal value of surface-distributed shear 

force that can be transmitted in a sub-contact where zero normal directional surface-

distributed joint force is acting. When a nonzero normal force acts in the sub-contact, 

the maximum allowable shear force is obtained by first multiplying the intensity of 

the distributed normal force at the joints by the friction coefficient and then adding 

the resulting value to the cohesion. For contacts being in a frictionally sliding state 

(either because this is their original type, i.e. dry block-to-block contacts, or because 

of being an inner face that was broken previously), friction angle shows the usual 

Coulomb-type initial and residual friction angle; iii) Friction angle can apply for both 

cohesive and dry contacts. iv) Dilation angle occurs when the sub-contact slides; thus, 

the increment of the tangential relative translation is nonzero, resulting in nonzero 

normal displacement. The ratio between them is proportional to the tangent of the 

dilation angle. 
 

3  Results 
 

This section shows a few numerical applications of the proposed JLD method. Section 

3.1 benchmarks the numerical code and the numerical procedure implemented to 

avoid dilation against 2D numerical examples proposed in [22], which consider only 

dry interface. After that, Section 2.2 benchmarks the JLD method on simple examples 

considering both dry and inner interfaces. Lastly, Section 3.3 proposes the JLD 

analysis of a flat arch inspired by Leonardo’s arch, validated against a virtual test 

conducted in the 3DEC environment. 
 

3.1 Validation of JLD single-surface optimisation 

  

Here the JLD numerical formulation is benchmarked against three applications taken 

from [22]. In particular, the JLD multi-surface optimisation is solved considering only 

dry interfaces, reducing thus to a single surface plasticity convex approach. In [22], 

these three examples were also benchmarked against the non-linear formulation 

proposed by Ferris and Tin-Loi [29]. Each example problem consists of a freestanding 

wall supported on a base and subjected to in-plane horizontal forces applied to the 

centroid of each block to simulate earthquake-type loading. Each full block has a 
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weight of 1 unit, a face area of 4 × 1.75 units, and is subjected to a unit horizontal live 

load with the same friction coefficient μ = 0.65 was adopted. 
 

 

Figure 2: JLD datastructure of a T-shaped block with supporting base: (a) single 

rigid block on support; (b) standard rigid block datastructure; (c) JLD datastructure 

considering four inner and one dry interface. 
 

Results are shown in Table 1 and Figure 2. The JLD non-associative friction solutions 

obtained in the present study are identical to those obtained in [22], both in terms of 

load factors λ and corresponding mechanisms. 
 

 

 λ 

Frequency Gilbert at al. JLD 

(a) 0.63982 0.63916 

(b) 0.56262 0.55881 

(c) 0.35582 0.35585 

Table 1: Comparisons of JLD load-bearing results against the ones proposed in [22]. 
 

3.2 JLD multi-surface analysis validation 

 

In this section, the JLD method and its multi-surface formulation are validated using 

simple examples that can be checked by hand. In all the following analyses, the inner 

interfaces, whenever present, are characterised by a prescribed shear strength τ 

coupled with zero tensile strength.  

 

Figure 3: JLD horizontal load-bearing analysis of a simply supported block whose 

contact with the foundation is supposed to happen on an inner interface. As the 

reader can notice, the mechanisms are aligned with the incremental forces. 

(a) (b) (c)

(a) (b) (c)



10 

 

The first example looks at a simply supported block. The contact with the base is 

defined as an inner interface. The collapse of the assembly always happens 

independently of the direction when λ equals τ𝐴/𝑊, being A is the inner interface's 

contact area, and W is the free block's weight (Figure 3). The corresponding collapse 

mechanisms are aligned with the external force directions. While the first example 

accounts for only an inner interface, the second one includes both an inner and a dry 

interface. Indeed, the assembly comprises a vertical block in dry contact with its 

supporting base. This vertical block is subdivided into two equal stacked cubes with 

weights equal to W. A horizontal parametric load-bearing capacity is performed, and 

the results are depicted in Figure 4 as a function of the cube’s weight W, the inner 

interface’s shear strength τ, and dry interface’s friction coefficient μ. 
 

 

Figure 4: JLD horizontal load-bearing analysis of a block in dry contact with its 

supporting base and subdivided into two equal stacked cubes: four possible 

mechanisms as a function of the W, shear strength τ, and friction coefficient μ. 
 

3.3 JLD analysis of Leonardo’s flat arch 

 

The last example provided is inspired by Leonardo's arch, which is a flat interlocked 

arch designed by Leonardo Da Vinci (Figure 5b). The arch modelled in this paper is 

designed over a discontinuity grid, where each cell has 0.1 m length, width, and depth 

(Figure 5a).  

 
Figure 6: Discretisation and geometry of the flat arch model (a) inspired by 

Leonardo [30] (b). 
 

The arch is subjected to its self-weight equal to 1400 kg/m3 and three increasing 

vertical forces loading the inner rigid block of the arch (Figure 5a). The analysis aims 

to investigate the potential collapse mechanism and the corresponding collapse by 

(a) (b) (c)

and and 

(d)

and 

dry face

inner  face0.1 m

(a) (b)
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comparing JLD and 3DEC results. JLD analysis is conducted considering a friction 

angle equal to 30° for dry interfaces, while inner interfaces are characterised by 

tangential and tensile strengths equal to 0.2 MPa and 2 MPa, respectively. Figure 7 

depicts the corresponding collapse mechanisms found with and without dilation. It is 

worth noting that the corresponding load multiplier decreases. The 3DEC model 

consists of the same rigid cells depicted in Figure 6a. Each contact is discretised into 

a mesh with a maximum edge size of 0.025 m. Table 2 summarises the implemented 

material properties for both inner and dry contacts. Applying the three increasing 

forces on the upper face of the middle T-shaped block, the ultimate force for the model 

with and without dilation at the dry faces is calculated to be 1911.13 N and 2187 N, 

respectively. Figure 7 shows normal and tangential stresses together with the failure 

mechanisms. Surprisingly, the 3DEC results provide solutions without dilation that 

are higher than the ones found with it. 
 

 

Figure 7: JLD collapse mechanisms with (a) and without dilation (b). 
 

The ultimate values of the model with dilation obtained by JLD (2153 N) and 3DEC 

(1911.13 N) present an acceptable agreement, while the collapse mechanisms found 

by the two methods are almost identical. On the other hand, the discrepancy between 

the results without dilation is not negligible. Indeed, while the JLD result is 1312 N, 

3DEC provides 2187 N, which is even larger than the one obtained with dilation. This 

result is quite surprising as it has been commonly accepted that the load-bearing 

capacity of a discrete assembly with convex polyhedral blocks reduces when dilation 

is neglected. This might be extended to assemblies with concave polyhedral blocks, 

including the presented multi-surface model. However, this conclusion requires a 

more comprehensive study. 

 

 Normal stiff. Shear stiff. Cohesion Tension Friction Dilation 

Interfaces [Pa/m] [Pa/m] [MPa] [MPa] [ ° ] [ ° ] 

Dry 1.09 1.09 0.0 0.0 30.0 30.0 and 0.0 

Inner 1.09 1.09 0.2 2.0 0.0 0.0 

Table 2: Material parameters adopted for the 3DEC analyses. 
 

4  Conclusions and Contributions 
In recent years, the growing interest in low-carbon materials and environmentally 

friendly joinery methods has driven the development of innovative computational 

methods to enhance the design of sustainable discrete element assemblies. Dry joints 

can significantly reduce environmental impact by minimising material consumption 

(a) (b)
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and leveraging sustainable assembly and disassembly processes. However, designing 

and assessing these assembly typologies requires accurate modelling of complex dry 

interfaces, including the possibility of block fracturing. 

 

 

 
Figure 7: 3DEC results: shear (top) and normal (middle) stresses and collapse 

mechanisms (bottom) with (left) and without (right) dilation. 
 

To this aim, this research introduced the Joint Layout Design (JLD) method, a new 

3D computational approach for modelling and assessing discrete element assemblies 

with complex-shaped, non-planar interfaces. Unlike standard methods that consider 

blocks as rigid, JLD accounts for potential internal failures by considering finite 

internal material strengths in tensile and shear modes. Indeed, the JLD method models 

potential failure planes within blocks (inner interfaces). In contrast, the contact among 

original blocks is still assumed to be unilateral and governed by a non-associative 

Mohr-Coulomb friction law. The mechanical problem is framed within limit analysis, 

and the corresponding equilibrium problem is solved using iterative second-order 

cone programming. Collapse mechanisms are defined using dual values from the 

solution. JLD analyses were first validated against numerical results from the 

literature without considering inner interfaces. Subsequently, multi-surface JLD 

analyses were performed and validated manually on a simply supported block. Lastly, 

the pros and cons of the method were demonstrated through the load-bearing JLD 

analysis of a flat arch inspired by Leonardo’s arch, which was validated against a 

virtual test conducted in the 3DEC environment. Future works will look at more 

complex 2D and 3D geometries implementing different yielding surfaces for the inner 
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interfaces and extending the Gilbert et al. [22] procedure to 3D. Lastly, an in-depth 

study of 3DEC analyses using inner and dry faces will be performed. 
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