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Abstract 
 

This paper presents a novel shear deformable numerical model designed for the 

nonlinear stability analysis of beam-type structures. The incremental equilibrium 

equations are derived for a straight thin-walled beam element using an updated 

Lagrangian formulation. This formulation accounts for the nonlinear displacement 

field of cross-sections, considering both restrained warping and large rotation effects. 

The model incorporates shear deformation effects by addressing coupling effects such 

as bending-bending and bending-warping torsion in the composite cross-section. 

Cross-section properties are computed based on the reference modulus, enabling the 

modelling of various laminate configurations. A numerical algorithm is developed to 

determine the geometric properties of the composite cross-section. The proposed 

model is validated through examination of different material configurations and 

presentation of several benchmark examples. Results indicate that the model is devoid 

of shear locking issues and demonstrates reliable performance. 
 

 

Keywords: thin-walled, composite cross-section, beam model, buckling, large 

displacement, nonlinear stability analysis. 
 

1  Introduction 
 

Load-bearing composite structures often feature slender beam elements with thin-

walled cross-sections, introducing increased complexity and susceptibility to 

deformation instability and buckling in their response to external loading [1-3]. 
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Various forms of instability, including pure flexural, pure torsional, torsional-flexural, 

or lateral deformation, may manifest in these optimized structures. Therefore, 

accurately determining the buckling strength, representing the limit state of 

deformation stability, is crucial during the design process. 
 

While analytical solutions exist for simpler cases [4], the necessity for numerical 

solutions becomes apparent. Several studies [5-9] have presented geometric nonlinear 

analyses of composite beam structures, considering the influence of shear 

deformation. These works address bending-bending and bending-warping torsion 

coupling shear deformation effects, particularly in asymmetric cross-sections where 

the principal bending and shear axes do not align. 
 

In a prior publication by the authors [9], composite frames were introduced using 

geometrically nonlinear beam elements that account for shear deformation effects, 

albeit focusing solely on cross-ply laminated composite structures. The current study 

aims to conduct a large displacement nonlinear analysis of thin-walled beam-type 

structures, considering shear deformation effects and incorporating material 

inhomogeneity in the form of angle-ply laminates. The analysis exclusively relies on 

the authors' developed numerical model, and the results will be compared with those 

obtained from relevant sources. 

 
 

 

2  Methods 
 

To incorporate shear deformation effects, this formulation relies on modified 

Timoshenko's theory for non-uniform bending and modified Vlasov's theory for non-

uniform or warping torsion. Additionally, the present work introduces an enhanced 

shear-deformable beam formulation, addressing bending-bending and bending-

warping torsion coupling shear deformation effects [5-10]. These effects become 

prominent in asymmetric cross-sections where the principal bending and shear axes 

do not coincide [11]. The beam member is assumed to be prismatic and straight, while 

external loads are treated as conservative and static. 
 

The geometric stiffness of the element is derived using the updated Lagrangian 

(UL) incremental formulation [12,13], which incorporates the non-linear 

displacement field of the cross-section. This field includes second-order displacement 

terms to accommodate large rotation effects. Consequently, the incremental geometric 

potential of the semitangential moment is determined for internal bending and torsion 

moments, ensuring moment equilibrium conditions are maintained at the frame joint, 

where beam members with different spatial orientations are connected [14,15]. 

Through the use of cubic interpolation for deflections and twist rotation, along with 

an interdependent quadratic interpolation for slopes and the warping parameter, 

considering shear-deformable effects, a locking-free beam element, known as a super-

convergent element, is obtained. This element eliminates the need for reduced 

integration techniques to prevent shear locking [16]. In terms of the incremental-

iteration scheme, the generalized displacement control method [15] is employed, and 

nodal orientation updating at the end of each iteration is conducted using the 
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transformation rule applicable to semitangential rotations [17,18]. The force recovery 

phase follows a conventional approach [18,19]. 
 

To address material inhomogeneity within a composite cross-section, a separate 

numerical model is employed for calculating cross-sectional properties. These 

properties are weighted by the reference modulus [11]. All cross-sectional properties 

are defined for the middle line of the cross-sectional branch and currently apply 

exclusively to balanced and symmetrical angle-ply laminates. 
 

3  Results 
 

 
 

Figure 1: Cross-section shapes and buckling load versus ply orientation (θ) for the 

cantilever column. 
 

 
 

Figure 2: Convergence analysis for the cantilever column, prebuckling response for 

ply orientation θ = 10°. Left: monosymmetric U profile. Right: asymmetric profile. 
 

The THINWALL v.18 software has been developed using a finite element procedure 

that integrates various methods discussed in the preceding section. This program is 
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capable of conducting both linearized and nonlinear stability analyses. For nonlinear 

stability analyses, the program employs the generalized displacement control method, 

introducing a small perturbation load to initiate buckling. This load-deformation 

approach enables a thorough investigation of stability issues, evaluating the structural 

behavior across the entire range of interest. It covers both pre- and post-buckling 

phases, providing a comprehensive plot of the structure's loading as a function of 

deformation. This approach offers more reliable information for actual structures and 

loading conditions compared to the eigenvalue approach. 
 

 
 

Figure 3: L-frame configuration under a load (F) in the Z-direction at the free end. 
 

To evaluate the impact of shear deformability on the stability behaviour of the 

studied structural members, two model comparisons are conducted. The first 

comparison, identified as 'SR' in the presented results, neglects shear deformability 

effects entirely. The second model, referred to as 'SD' in the presented results, 

incorporates shear deformation effects using the methodology outlined in this paper. 

The material under examination is graphite-epoxy (AS4/3501), characterized by the 

following properties: longitudinal elastic modulus (E1) = 144 GPa, transverse elastic 

modulus (E2) = 9.65 GPa, shear modulus (G12) = 4.14 GPa, and Poisson's ratio (v12) = 

0.3. 
 

In the initial example, a cantilever column with a length (L) of 100 cm, subjected 

to an axial force (F) is examined. The cross-section shapes being analysed are depicted 

in Figure 1. In the case of the asymmetric profile, the column experiences buckling in 

a torsional-flexural mode. For the other two profile shapes column experiences 

buckling in a flexural mode. Each branch of the cross-section consists of a symmetric 

and balanced laminate with a [θ/-θ]2S stacking sequence, where all plies share the 

same thickness. Figure 1 illustrates the correlation between the buckling load and the 

ply orientation (θ). 
 

In the nonlinear stability analysis, a small perturbation force with an intensity of 

0.001F is introduced, acting in the X-direction. Figure 2 presents the nonlinear 

convergence study for four different mesh configurations, including one, two, four, 

and eight beam elements. The results in Figure 2 are normalized by the critical 

buckling force obtained from the laminate shell solution using NX Nastran software. 
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For a ply orientation of θ = 10°, the critical buckling force (FCR) is 17.5 kN for the I 

profile, 43.9 kN for the monosymmetric U profile and 24.2 kN for the asymmetric 

profile. The SD model consistently and accurately identifies the buckling state across 

all mesh configurations used, while the SR model tends to overestimate the buckling 

strength by approximately 10%. 
 

 
 

Figure 4: Buckling load versus ply orientation (θ) for the mono-symmetric channel profile 

in the L-frame. 
 

In the second example, an L-frame is subjected to a load (F) in the Z-direction, 

applied through the centroid of the cross-section at the free end, as depicted in Figure 

3. A mono-symmetric channel profile is utilized, and it is assumed that there is full 

warping restraint at the frame corner. In the case of the mono-symmetric channel 

profile, the frame experiences buckling in a lateral-torsional mode. 
 

  
 

Figure 5: Convergence analysis for the L-frame (θ = 0°). Left: Prebuckling response. 

Right: Postbuckling response. 
 

In this specific case, each branch of the cross-section is built using a symmetric 

and balanced laminate with a [θ/-θ]2S stacking sequence, where all plies have the same 

thickness. Figure 4 illustrates the relationship between the buckling load and the ply 

orientation (θ). In this example, it is observed that the buckling strength reaches its 
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maximum when the ply orientation is set at 10°. However, in this case, the effect of 

shear deformations is notably more pronounced, exerting a more substantial influence 

on the overall buckling behaviour. 
 

In the nonlinear stability analysis, a small perturbation force with an intensity of 

0.001F is applied in the X-direction. The results presented in Figures 5 and 6 are 

normalized by the critical buckling force obtained through the laminate shell solution 

from NX Nastran software. The critical buckling force for a ply orientation of θ = 0° 

is FCR = 25.1 kN, and for a ply orientation of θ = 10°, it is FCR = 26.3 kN. Figures 5 

and 6 depict the nonlinear convergence study for four different mesh configurations, 

each consisting of one, two, four, and eight beam elements per frame member. It is 

evident that the SD model consistently and accurately identifies the buckling state 

across all mesh configurations, whereas the SR model overestimates the buckling 

strength. 
 

  
 

Figure 6: Convergence analysis for the L-frame (θ = 10°). Left: Prebuckling 

response. Right: Postbuckling response. 
 

 

 

4  Conclusions and Contributions 
 

A refined shear-deformable beam formulation has been proposed for the 

geometrically nonlinear stability analysis of composite frames. This formulation takes 

into account the impact of shear deformation resulting from non-uniform bending and 

torsion in thin-walled beams with asymmetric cross-sections. Benchmark examples 

have been presented to validate the model's performance. The significance of 

including shear deformations in the formulation is apparent, as evidenced by a 

significant reduction in stability strength compared to models that neglect shear 

effects. 
 

The developed model provides flexibility in handling warping restraints at nodes, 

offering control at either a global or local level. Global control involves implementing 

warping prevention for all beam elements connected at a common joint. On the other 

hand, local control can be achieved by using warping transformation parameters that 
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indicate the specific warping restraint conditions for individual beam elements at a 

given node. 
 

To validate the accuracy and reliability of the model, shear-locking tests were 

conducted with various mesh configurations. The results of these tests affirm that 

shear locking does not occur in the model, providing evidence of its effectiveness in 

accurately capturing shear deformation behaviour. 
 

Moreover, the model has been employed to analyse the influence of various 

material configurations, showcasing and verifying their impact on the critical load 

through selected examples. 
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