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Abstract

The paper focuses on developing a complex numerical procedure for 3D-printed ti-
tanium alloys utilized for dental implants. An experimental campaign has been or-
ganized to study the influence of imperfections found in specimens that reach print-
ing limits. The lower ultimate strength of thinner specimens is assigned to observed
higher porosity. The specimens are printed from a powder that contains different-sized
spherical particles. Therefore, the lattice discrete particle model, which can take the
porosity into account, is used for numerical simulations. The theory of plasticity is
utilized on facets defined in the model. Such a numerical tool is crucial for simulat-
ing the implant behaviour under different loading conditions and will allow/support a
patient-specific design.

Keywords: lattice discrete particle model, 3D-printed material, porous structure, tita-
nium alloy, plasticity, experimental data

1 Introduction

Biocompatibility and mechanical properties determine how an implant and human
bone interact. Stress shielding plays a well-acknowledged role in the loss of bone
mass, and excessive interface stresses between the implant and human bone can lead to
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interface debonding and, ultimately, implant loosening. Using porous microstructures
on the exterior of stiff implants as stabilising elements for relatively compliant human
bone has garnered considerable attention, especially when considering the possibility
of customising implants for each patient [1].

The production of suitable porous materials for bioengineering is challenging (Fig-
ure 1). However, the emergence of 3D printing technology in the past decade has
revolutionised this field. It provides an efficient and effective means of creating these
materials, including patient-specific implants. Furthermore, it enables the necessary
surface treatment, a crucial factor in the successful osseointegration of the implant.

(a) (b)

Figure 1: Gyroid structure: (a) example of one-cell surface; (b) basic cells.

In the present paper, we focus our attention on the numerical modelling of 3D-
printed alloy structures exhibiting flaws arising during production. People have been
studying how solid materials behave for a very long time. Many theories, often based
on the continuity of the displacement field, have been developed to describe and
predict the mechanical or non-mechanical behaviour of solids. However, a class of
models abandoning the displacement continuity assumption has also been formulated.
Those models are typically composed of either basic structural elements that form a
lattice network or discrete particles that tract at their mutual contact points [2]. The
discrete models involve, e.g. classical lattice models, particle-based lattice models,
and discrete element methods.

Our numerical study [3] and results presented in [4] show a relatively low stiffness
of 3D-printed titanium specimens offered by experimental measurements compared
to numerical predictions by order of magnitude. Such discrepancy is assigned to the
flaws arising in the small-scale specimens during the 3D printing. Therefore, the main
aim of this paper is to study the suitability of a numerical model based on the lattice
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discrete particle model (LDPM) [5, 6] to study the behaviour of 3D-printed structures.
More specifically, the influence of printing precision is of the main interest. LDPM
can generate and simulate the material of interest at the particle scale to consider its
size and distribution. The material behaviour is defined on the facets between adjacent
particles [5].

2 Experimental data

The experimental campaign was focused on 3D-printed specimens for uniaxial tensile
tests to obtain fundamental material characteristics specific to the 3D-printed titanium
alloys. 3D-printed samples were created using the Selective Laser Melting (SLM)
method, utilizing Ti25Nb4Ta8Sn or Ti6Al4V alloy powders. The powder size and
distribution are documented in Figure 2. It can be seen that the average powder size is
around 60 µm with a distribution from 20 to 140 µm.

Figure 2: Size distribution of TiNbTaSn alloy powder used for SLM printing.

Mechanical testing in uniaxial tension was conducted using a LiTeM machine op-
erating in controlled displacement mode. All dog bone specimens, schematically de-
picted in Figure 3, were vertically clamped within self-locking jaws and loaded along
the longitudinal axis of the specimen. A loading rate of 0.04 mm/min was chosen
following EN 10993 standards. The dog bone specimens with different thicknesses
(500, 750, and 1000µm) were produced to test the influence of flaws and, thus, print-
ing quality. The experimental results for the Ti25Nb4Ta8Sn alloy with and without
post-annealing are summarized in Table 1. As can be seen from the presented data, the
influence of imperfections caused by the printing is more pronounced for the thinner
specimens where the printer limits are reached, i.e., thinner specimens show higher
porosity than the thicker specimens.
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Figure 3: Geometry of dog bone specimens for uniaxial tensile tests with a thickness
t = 500, 750 or 1000µm.

t [µm] units with annealing without annealing
Fmax [N] 408 ± 12 208 ± 30

500 σmax [MPa] 204 ± 6 135 ± 15 5
E [MPa] 3620 ± 108 37230 ± 410
Fmax [N] 889 ± 38 674 ± 86

750 σmax [MPa] 296 ± 13 225 ± 29
E [MPa] 3810 ± 152 3970 ± 460
Fmax [N] 1443 ± 69 1011 ± 101

1000 σmax [MPa] 361 ± 17 253 ± 25
E [MPa] 3940 ± 190 4184 ± 420

Table 1: Average values of ultimate force, ultimate tensile strength, and Young’s mod-
ulus of elasticity for various thicknesses (Ti25Nb4Ta8Sn).

3 Lattice discrete particle model

In general, the lattice discrete particle model is often used to simulate the behaviour
of quasi-brittle materials, such as rocks [7] and concrete [5], if the internal structure
should be taken into account. The material is viewed as a group of stiff bodies (cells)
interacting over the facets that are defined between them. These facets are considered
to be between the neighbouring cells and can be thought of as possible crack surfaces.
First, the volume under examination is filled with spherical particles. The lattice sys-
tem that depicts the mesostructure topology is defined employing a Delaunay tetrahe-
dralization of the particle centres and nodes used to characterize the external surface
of the volume. Next, the system of polyhedral cells is designed according to the 3D
tessellation. Note that many alternatives are used for the tessellation, as explained
in [5] and [8], for example. Cells are formed by the aggregate and the matrix phase
that surrounds the particles. Unlike the original LDPM formulation, in the current
paper, the particle size distribution must be specified for the 3D-printed metals. The
numerical model and incorporated flaws are shown in Figure 4.

Before proceeding to the detailed model description, stress and strain vectors de-
fined on the facets are introduced. The rigid body kinetics is employed to describe the
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(a) (b)

Figure 4: LDPM model of dog bone specimen: (a) full model; (b) part of the model
with flaws (voids) in the cross-section.

displacement vector, u, associated with the facets [5]

u (x) = ui + θi × (x− xi) , (1)

where ui and θi are the translational and rotational degrees of freedom of node i with
coordinate vector xi. For the given displacements and rotations of the associated par-
ticles, the relative displacement at the centroid of facet k can be determined as

uCk = uCj − uCi, (2)

where uCi and uCj are the displacements at the facet centroid caused by the transla-
tions and rotations of the adjacent nodes i and j, respectively. Displacement vector
uCk is then employed to define the strain measures and discrete compatibility equa-
tions as follows

εNk =
nk

TuCk

lij
, εMk =

mk
TuCk

lij
, εLk =

lk
TuCk

lij
, (3)

where n = (xj − xi)/lij , m and l are two mutually orthogonal vectors in the plane
of the projected facet and lij = ∥xj − xi∥ = [(xj − xi)

T(xj − xi)]
1/2. xi and xj

stand for the positions of node i and j, respectively. It was pointed out in [9] that
the aforementioned split into the normal and shear components is not able to recover
the full Poisson ratio range (−1 < ν < 0.5) and is limited to ν < 0.25. Therefore,
the volumetric-deviatoric split introduced in the Microplane models [10, 11] is con-
sidered. The volumetric-deviatoric split allows to recover the full Poisson ratio range
needed for alloys. Because of the underlying tetrahedral mesh and corresponding
facets Ωe (see [5]) the volumetric (hydrostatic) strain is calculated as [12]

εV k =
1

3Ωe,0

∑
k∈Fe

ΓklijεNk, (4)
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where Ωe,0 is the initial volume of the tetrahedral element, Fe is the set of facets
belonging to one element and Γk and lij are the facet area and distance of the adjacent
nodes corresponding to the facet, respectively. The normal deviatoric strain takes the
form

εNDk = εNk − εV k. (5)

Moreover, the shear (tangential) strain in the plane of the facet is written as εTk =
(ε2Mk + ε2Lk)

1/2 and deviatoric strain as εDk = (ε2NDk + ε2Tk)
1/2. The corresponding

stress components then read

σV = EV εN , σND = EDεND, σM = EDεM , σL = EDεL, (6)

where EV = E/ (1− ν) and ED = E/(1 + ν) are the volumetric and deviatoric
moduli, respectively, related to Young’s modulus E. The constitutive material law de-
fined on the facets is described in the following section. By imposing the equilibrium
through the principle of virtual work, the internal work and nodal forces associated
with the facet can be calculated [5]. Note that subscript k is omitted in the following
text for readability.

3.1 Material model

This section describes the material models used for the titanium alloys’ plasticity.
These models were inspired by the definition studied and described in [13] and are
based on the volumetric-deviatoric split. More specifically, two lattice discrete particle
models for plasticity, substantially different from each other, are discussed hereafter:

1) von Mises inspired material model,

2) equivalent stress based material model.

3.2 Von Mises inspired material model

In this material model, the yield condition is given similarly to the standard von Mises
yield criterion (J2 plasticity) in the form

f (σ) = σ2
ND + σ2

M + σ2
L − σ2

Y = 0, (7)

where σY characterizes the magnitude of stress at yielding and is evaluated as σY (κ) =
σ0+Hκ, where κ stands for the accumulated plastic strain, σ0 is the initial yield stress,
and H is the hardening modulus. When the condition in Equation (7) is satisfied, yield-
ing occurs. The radial return is performed on the stress components σND, σL and σM

if f (σ) > 0.
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3.3 Equivalent stress based material model

The second model is defined by means of equivalent stress, σeq, and strain, εeq. The
equivalent strain has the form

εeq =

√
(εV + αεND)

2 + α (ε2M + ε2L) =

√
(εeqN )

2
+ αε2T , (8)

where εeqN = εV + αεND, α stands for the interaction coefficient. This definition of
equivalent normal strain originates from the assumption that σN = EV ε

eq
N . Based on

the principle of virtual power, we relate the stress components to the equivalent stress
as

σN = σeq ε
eq
N

εeq
, σM = σeqαεM

εeq
, σL = σeqαεL

εeq
, (9)

and
σV = σeq εV

εeq
, σND = σeqαεND

εeq
. (10)

By substituting Equations (9) and (10) into Equation (8), the effective stress is obtained
in terms of normal and shear stresses

σeq =

√
σ2
N +

σ2
T

α
, σT =

√
σ2
M + σ2

L. (11)

If the elastic behaviour is assumed and taking into account Equations (9) and (10), the
stresses are written as

σV = EeqεV , σND = αEeqεND, σM = αEeqεM , σL = αEeqεL, (12)

where Eeq = σeq/εeq = EV and thus α = ED/EV = 1− 2ν/1 + ν. This formulation
covers the whole physical range of the Poisson ratio. In this model the yield condition

is written as
f (σ) = (σeq)2 − σ2

Y = 0. (13)

When this condition is satisfied, yielding occurs. The radial return is performed on
the equivalent stress if f (σ) > 0.

4 Concluding remarks

The contribution gives an overview of the recently developed lattice discrete parti-
cle model for 3D-printed titanium alloys. The current numerical approach considers
the intrinsic porosity caused by the printing procedure and utilizes the yield condi-
tions for the model formulations associated with the facets. As presented in Table 1,
the imperfections caused by the printing procedure significantly influence the speci-
men performance and are strongly pronounced for the smaller thicknesses close to the
printing limits.
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