
Quadratic Programming Algorithm for Dual
Solution of Mortar-based Contact Problems in

Linear Elasticity
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Abstract

This paper presents an investigation into the numerical solution of linear elasticity
contact problems utilizing the Finite Element Method for discretization, the Mortar
method for handling non-penetration conditions, dual formulation for problem reduc-
tion, and optimal Quadratic Programming algorithms for scalable solution of dual
problem. The study outlines the implementation of a computational pipeline for solv-
ing such problems and evaluates its performance on selected benchmark. The paper
serves as an overview of the technique and can be regarded as a foundation for future
enhancements or modifications to individual steps.
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able algorithm, numerical solution

1 Introduction

Linear elasticity contact problems represent a significant area of study in computa-
tional mechanics, particularly in understanding the behavior of structures subject to
contact forces. These problems arise in various engineering applications, ranging
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from automotive and aerospace industries to biomechanics and civil engineering. Un-
derstanding the interaction between solid bodies in contact is essential for designing
reliable and efficient structures.

In linear elasticity contact problems, the objective is to analyze the deformation
and stress distribution in solid bodies under external loads and constraints, while ac-
counting for contact interactions between them. These interactions can give rise to
complex phenomena such as friction, adhesion, and deformation discontinuities at the
contact interfaces. However, the numerical solution of linear elasticity contact prob-
lems poses significant challenges due to the nonlinear nature of contact conditions,
geometric complexities, and computational costs associated with large-scale simula-
tions.

In this paper, we focus on the numerical solution of 2D linear elasticity contact
problems using the Finite Element Method (FEM, [1]), Mortar method for contact
detection [2], and optimal Quadratic Programming (QP) algorithms [3] for solving
the dual formulation of the problem. We present a comprehensive review of the so-
lution pipeline, covering the formulation of the problem, discretization techniques,
handling of contact conditions, and solution algorithms. We are mainly interested in
the scalability properties of presented numerical methods. To address this goal, we im-
plemented the methodology in Matlab [4] and we demonstrate the scaling properties
of individual ingredients on a selected benchmark.

Throughout the paper, we address the problem presented in Section 2 by introduc-
ing the geometry, material properties of the considered bodies, and present the dis-
cretized formulation of the problem in the form of constrained optimization problem.
We specifically select a problem that can be easily meshed with any level of rough-
ness, allowing us to study and present the scalability of the implementation based
on the discretization parameter of the mesh. This section also briefly shows how
Mortar method is utilized to deal with the definition of the non-penetration condition
through linear inequality constraints. This step is crucial for handling non-conforming
meshes, which is exactly our case. Section 3 introduces the dual problem, where the
unknowns are Lagrange multipliers corresponding to the defined equality and inequal-
ity constraints. Here, the crucial step involves computing the pseudoinverse of the
stiffness matrix, which can be avoided using smart factorization. Additionally, we in-
clude the scalability results of the used approach. Section 4 outlines the QP algorithm
for solving the dual problem. We adopt the Semimonotonic Augmented Lagrangian
Method (SMALBE) to enforce the equality conditions using penalization, while the
inner problem with pure inequalities is addressed by the Modified Proportioning with
Reduced Gradient Projection (MPRGP). This method is an active set method, where
the problem on the free set is solved by Conjugate Gradient steps, and the solution
process on the whole set is finally resolved by projection steps with a guaranteed de-
crease of the objective function. Finally, Section 5 presents the obtained numerical
solution of the proposed problem and Section 6 concludes the paper.
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2 The problem

The geometry of our benchmark is presented in Figure 1. We consider a rectangular
beam A with a length of l = 2m and a height of h = 0.25m, where the bottom left
corner of the rectangle is at a height of a = 0.5m. The rectangle is fixed on the
left side using a Dirichlet boundary condition, and a force F = 0.1GN is applied
downward at the upper right corner. The free deflection of the beam is restrained by
a half of the ring B defined with center S = [1m, 0m], inner radius r1 = 0.3m, and
outer radius r2 = 0.49m. This body is fixed with a Dirichlet boundary condition
on the bottom sides. The material of body A is defined by the Young’s modulus of
elasticity E = 200GPa and Poisson’s ratio ν = 0.3, while the material of body B has
characteristics E = 20GPa and ν = 0.3.
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Figure 1: The geometry of contact problem.

We employ quadrilateral finite elements to discretize the problem. In construct-
ing the mesh, we divide the rectangle into 8Nr squares along the x-axis and Nr

squares along the y-axis. Similarly, for the ring, we partition the angle into equidis-
tant 12Nh smaller angles and the radius into 2Nh equidistant intervals. By utilizing
the discretization parameters Nr, Nh ∈ N, we can adjust the number of nodes and
corresponding finite elements accordingly. For the mesh example with Nr = 4 and
Nh = 3, please refer to Figure 2. Here, we present also the solution deformations of
the problem. This combination of parameters leads to the mesh with 313 nodes and
the corresponding number of degrees of freedom (dof) n = 626.

The discretized problem is given by

u∗ = argmin
u∈Ω

1

2
uTKu− fTu, (1)

where unknown u ∈ Rn denotes the discretized displacement of nodes, K ∈ Rn,n

is given symmetric positive semidefinite stiffness matrix, f ∈ Rn is given vector of
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Figure 2: The mesh used for the discretization (left) and the solution of the problem
(right).

discretized forces and feasible set Ω ⊂ Rn constraints the solution to be feasible, i.e.,
the we are searching for the displacement which satisfies Dirichlet boundary condi-
tion and the non-penetration inequality condition. The Dirichlet boundary condition
can be straightforwardly implemented as linear equality constraint BDu = 0, where
matrix BD ∈ RmE ,n includes 1 in each row for corresponding node with the defined
boundary condition. Number mE ∈ N is a number of nodes with prescribed non-zero
displacement. See [5] for details. For the construction of the objects in equation (1),
which represent the primal formulation, we utilize the Matlab library [6]. This library
provides highly vectorized code, enabling efficient assembly of the sparse matrix K
in linear time. The computational time for this step is depicted in Figure 3, where we
present the performance for computing FEM objects for the rectangular body.”
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Figure 3: The computational time for assembling FEM objects of rectangle body in
linear scale (left) and logarithmic scale (right). The results are the average
of 100 runs.

The non-penetration condition is implemented using Mortar method [2]. In this
case, we utilize our previous experiences and code [7]. To be more specific, we use the
node-to-segment approach, where we use line segments of FEM discetization of the
bottom side of rectangle and the top side of ring. Each node on one side of the contact
interface is associated with one or more segments on the opposing side. The algorithm
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assembles non-penetration condition in form of linear inequalities BMu ≤ cM , where
BM ∈ RmI ,n, cM ∈ RmI and number mI ∈ N is a number of identified linear inequal-
ities. However, the precision of this linear approximation of non-penetration condition
is constructed from the actual position of nodes, therefore to obtain better results, we
implement pseudo-spatial approach, where we are slowly increasing the applied force
and update the solution based on the corresponding response of displacement. Af-
ter each time-step, we recompute the Mortar linearization. In our case, we use 10
steps. The scalability results of our implementation are presented in Figure 4. In this
case, the master body (rectangle) provides the segments to which are nodes from the
slave body (ring) projected. We obtained different number of contact segments using
various values of discretization parameters Nr, Nh.

Figure 4: The computational time for assembling linear inequalities using Mortar
method for different number of segments of master body (rectangle - bottom
side) and slave body (ring - top side). The results are the average of 10 runs.

3 Dual problem

Instead of solving the optimization problem (1), we solve the corresponding dual prob-
lem

λ∗ = arg min
λ∈Ωdual

1

2
λTFλ− λTd, (2)

with symmetric positive semidefinite Hessian matrix F ∈ Rm,m and new linear term
d ∈ Rm given by

F = BK+BT , d = BK+f − c, (3)
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and feasible set composed from lower bounds and linear equality constraints

Ωdual = {λ ∈ Rm : λI ≥ 0 and RTBTλ = RT b}. (4)

The size of the dual is the number of constraints of primal problem, i.e., m = mE+mI

and B, c, λ are composed from equality and inequality constraints

B =

[
BD

BM

]
∈ Rm,n, c =

[
0
cM

]
∈ Rm, λ =

[
λE

λI

]
∈ Rm. (5)

Matrix R ∈ Rr,n is a matrix of basis vectors of kerK. In the case of linear elasticity,
this object can be constructed using analytic formula.

The dual problem (2) is equivalent to the original (primal) problem (1), see [3].
After solving dual problem (2), one can reconstruct the solution of primal problem (1)
using

x∗ = K+(f −BTλ∗)−Rα∗, (6)

where α∗ ∈ Rr are Lagrange multipliers of dual problem corresponding to equality
constraints. The numerical algorithm, which we are using, is returning this vector.

From the computational point of view, the dual problem is much more smaller than
the primal problem (i.e., number of degrees of freedom n is lower than the number of
constraints m), therefore the solution of this problem should be cheaper. With respect
to “no free lunch” theorem, the price which has to be paid is hidden in the computation
of (3), i.e., the computation of pseudoinverse of stiffness matrix. The straightforward
implementation in Matlab involves using the command “pinv”, which computes and
assembles the pseudoinverse. However, despite the original stiffness matrix being
sparse and the number of non-zero elements depending linearly on the number of
nodes, the assembled pseudoinverse turns out to be dense. Furthermore, the assembly
process is computationally expensive. In fact, for sufficiently large problems, this
computation dominates the solution process.

To avoid this difficulty, we adopt idea from [8], where authors do not assemble the
preudoinverse, but “only” computed the Cholesky decomposition modified by the us-
age of so-called fixing node. In our implementation, we choose the fixing nodes based
on the spectral decomposition of the graph of given mesh. With the decomposition of
K, the application of matrix multiplication K+v can be implemented as a solution of
the system of linear equations. In the case of Cholesky decomposition, we perform the
linearly scaling reduction of variables twice. Following this trick, the assembly of ob-
jects in (3) and (6) consist of solution of linear systems with multiple right hand-side
vectors.

To demonstrate the efficiency of proposed method, please, see Figure ??, where we
compare the computation with pseudoinverse computed by Matlab command “pinv”
and our implementation of Cholesky decomposition with fixing nodes. For demon-
stration purpose, we are working only with the stiffness matrix corresponding to the
rectangle varying Nr.
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Figure 5: The computational time for assembling the pseudoinverse by Matlab com-
mand “pinv” compared to the computation of Cholesky decomposition (left)
and the multiplication of the pseudoinverse with a random vector (right).
The results are the average of 10 runs.

4 Algorithms

In our implementation, we use SMALBE (Semimonotonic Augmented Lagrangian
method for constrained QP, [3]) to solve the problem (2). The SMALBE is a Uzawa-
type algorithm which generates the approximations for the Lagrange multipliers cor-
responding to equality constraints of the dual problem in the outer loop and solves
auxiliary problems with bounds constraints in the inner loop. Application of the spe-
cific update rule for the penalty parameter results in convergence of the feasibility
error that is independent of the conditioning of the equality constraints. The basic
scheme has been proposed in [9], where authors adapted the augmented Lagrangian
method to the solution of problems with a general cost function subject to general
equality constraints and simple bounds, however, using the properties of quadratic ob-
jective function, stronger convergence results can be achieved [10]. The optimality
of the algorithm was shown in [3] and [11]. For the survey and possible extension to
quadratic constraints, see [12].

The inner problem is solved by active-set algorithm proposed by [3]. The basic
version was proposed independently by [13] and [14] and can be considered as a
modification of the well-known Polyak algorithm. One of the key ingredient is the
estimation of the decrease of objective function during the gradient projections [15].
Later in [16], authors combined the proportioning algorithm with the gradient pro-
jections [17], they use the constant Γ > 0, the test to decide about leaving the face,
and three types of steps to generate convergent monotone algorithm. The algorithm is
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based on using the free, chopped, and projected gradients to minimize the cost func-
tion on the free set using Conjugate Gradient (CG) steps and afterwards on the active
set using shortened CG step and projected gradient steps. The switching between
these processes is realized by the proportioning condition.

We implemented algorithms in Matlab environment. For the demonstration, we fix
the discretization of ring Nh = 15, which results in number of dofs corresponding to
ring nr = 11222 and number of contact segments of top side equal to 180. Figure 7
demonstrates the scalability of the approach and our implementation.
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Figure 6: Scaling of the method and implementation with change of the discretization
parameter of rectangle body Nr. The size of the dual problem is much more
lower than the size of primal problem (top left, logarithmic scale), the num-
ber of Dirichlet equality constraints and Mortar inequality constraints (top
right), the dependency of the dualization time and the solution time of opti-
mization problem depending on the size of dual problem (bottom left), and
the dependency between the size of primal problem and the computational
time.
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N #nodes #elements #dofs #segments

rectangle 30 7471 7200 14942 240

ring 15 5611 5400 11222 180

total 13082 12600 26164

Table 1: Parameters of the largest problem.

5 Final results

In this final section, we present the solution for the largest problem considered in this
paper. We solved the problem with the parameters presented in Table 1. The assembly
of the FEM objects took 0.087 seconds, the computation of the Cholesky decomposi-
tion of the stiffness matrix took 0.078 seconds, the sum of the Mortar computations in
all steps amounted to 2.064 seconds, the dualization in all steps took 26.6858 seconds,
and all dual QP problems were solved in 1.0739 seconds.

Figure 7: Normal stress, Shear stress, and Von Mises stress for the selected benchmark
with parameters in Table 1.

All results presented in this paper have been computed in Matlab R2020a on per-
sonal computer with processor AMD Ryzen 5 3600 6-Core and 32 GB DDR4 RAM.
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6 Conclusion

In this paper, we have briefly shared our experiences with implementing a pipeline for
solving linear elasticity contact problems using the Mortar method, dual formulation,
and optimal QP algorithms. While the results appear promising, the true potential of
dualization becomes evident when applied in parallel computation and combined with
the Finite Element Tearing and Interconnecting Method (FETI, [18]). This approach
distributes the computation of the pseudoinverse to computational nodes, significantly
improving the efficiency of the method. Our aim is to achieve results similar to those in
previous works [19], [20], but this time incorporating friction and non-linear elasticity.
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bounded contact problems,” Management Systems in Production Engineering,
vol. 31, no. 4, pp. 449–455, 2023.
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