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Abstract

The response of slender engineered structures in close proximity to the lock-in fre-
quency region exhibits multiple dominant frequencies that contribute to the quasi-
periodic nature of the response. The difference in individual dominant frequencies
increases significantly with increasing distance from the lock-in region. This effect
alters the character of the response from apparently non-stationary to quasi-periodic,
with the frequency of beating varying as the distance from the locking interval changes.
In the presence of combined random and harmonic excitation, the response character
varies between stationary, cyclo-stationary, and non-stationary, depending on the in-
tensity of the stochastic component.

While the probabilistic characteristics of a non-linear Single Degree of Freedom
oscillator of the van der Pol type system on a slow time scale can be described using
partial amplitudes of the response, this paper specifically focuses on the non-stationary
case. The solution to the Fokker-Planck equation for the cross-Probability Density
Function of the partial amplitudes is determined using the Galerkin approximation.
For this purpose, orthogonal polynomial basis functions are utilized and assessed.

Keywords: Fokker-Planck equation, stochastic averaging, numerical solution, Galerkin
approximation, van der Pol-type oscillator, partial amplitudes
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1 Introduction

Large and slender engineering structures, including bridge decks, masts, high-rise
buildings, or power lines and catenary systems, are prone to diverse vibration effects
due to their inherent softness. Considering the underlying physics, these structures
exhibit various non-linear modes influenced by the ratio or difference between nat-
ural and excitation frequencies, even in simple cases. In the vicinity of the lock-in
region, the non-stationary response takes on a quasi-periodic nature, with the beat-
ing frequency significantly varying with distance from the lock-in frequency interval.
This distinctive behaviour is notably influenced by the presence of combined random
and harmonic excitation.

Analogous phenomena are observed in many non-linear physical problems, where
synchronization during resonance is simultaneously counteracted by random distur-
bances. For instance, wind-induced vibration caused by vortex shedding interacts
with transport-induced excitation, [1]. Similarly, situations arise where multiple wind-
induced excitation modes coincide due to changes in the structure’s geometry, such as
disturbances caused by icing, [2].

The stochastic characterization of the response is determined by the solution of
the Fokker-Planck equation (FPE), which, in such a general case, is time-dependent.
The previously employed approach, based on the formulation of partial response
amplitudes, only permits the solution of a simplified problem in which the high-
frequency components are averaged. The probability density function (PDF) obtained
in this manner describes the averaged stationary response characteristics of the system.
Whether such a solution is sufficient depends on the particular problem.

Various procedures exist for solving the Fokker-Planck equation (FPE). For numer-
ical solutions based on finite differences or finite elements, refer to works such as [3] or
the comprehensive review in [4]. The sophisticated approximate methods with specific
conditions for their application are subject of research for a long time, see, e.g., re-
view paper [5]. In particular, the usually employed methods comprise the Perturbation
Method [6], which is effective for systems with weak nonlinearity or the Stochastic
Averaging Method [7, 8] or Gaussian or non-Gassian Closure Methods [9, 10]. Nega-
tive values in PDF tail regions may occur with the Gram-Charlier series method [11].
The widely used Equivalent Linearization (EQL) Method [12] is effective only for
weakly nonlinear systems, assuming a Gaussian distribution for the PDF solution.
Very promissive is the Exponential Polynomial Closure (EPC) Method [13–15] has
proven effective for studying stationary PDFs, even with strong nonlinearities. The
recent references offer modifications for analyzing non-stationary probabilistic solu-
tions of nonlinear oscillators.

The present work by the authors builds on results derived previously for the reso-
nant stationary case, [2], specifically focusing on the response of the van der Pol-type
single-degree-of-freedom (SDOF) oscillator with additive excitation that combines
deterministic and random components in the lock-in region, i.e., synchronized eigen-
and vortex-shedding frequencies. In this paper, the complete evolutionary Fokker-
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Planck equation (FPE) is utilized, ruling out the possibility of finding an exact so-
lution. Knowledge of the exact solution of the corresponding FPE for the case of
zero detuning ∆ = 0 is exploited, which is then refined for ∆ ̸= 0 in the form of a
Galerkin approximation. The coefficients of this approximation are determined using
the Galerkin-Petrov orthogonalization procedure. The refinement is based on polyno-
mial basis functions.

This conference contribution presents intermediate findings from an ongoing re-
search project aimed at determining the time-dependent PDF of a non-stationary re-
sponse. Emphasis is placed on understanding the complex dynamics exhibited by a
nonlinear SDOF oscillator under combined harmonic and random excitations. These
results are offered as a reflection of the current progress, representing a working pa-
per that is part of the broader efforts to achieve a more precise time estimation in
subsequent phases of this research.

2 Mathematical model

The single-degree-of-freedom (SDOF) oscillator of van der Pol type, frequently em-
ployed to describe transverse wind-generated vibrations under additive excitation that
merges deterministic and random components, is represented by Eq. (1a). In in such
a configuration, the trivial solution becomes unstable, while the limit cycle attains
stability. Consequently, this model can capture beating effects, particularly for large
detuning of the linear natural frequency and the harmonic excitation component. Ad-
ditionally, it reflects the stabilization of the lock-in response due to the presence of a
stable limit cycle. The governing differential equation and its normal form are given
as

ü− (η − νu2)u̇+ ω2
0u = f(t) , (1a)

u̇ = v,

v̇ = (η − νu2)v − ω2
0u+Pω2 cosωt+ hξ(t).

(1b)

where:
u, v is the displacement [m] and velocity [ms−1];
η, ν are the parameters of the linear and quadratic damping, respectively [s−1, s−1m−2];
ω0, ω are the eigen-frequency of the linear SDOF system and frequency of the vortex

shedding [s−1];
f(t) represents external excitation: f(t) = Pω2 cosωt+ hξ(t);
Pω2 and ξ(t) are the amplitude of the harmonic excitation force [ms−2] and the broad-

band Gaussian random process [1 ]; and
h is the multiplicative constant [ms−2].

In the following, it will be supposed that both input and output processes are
Markovian. The general problem can be reformulated as a system of n first-order
Itô stochastic differential equations, with N random noise terms in a normal form,
expressed using Einstein notation as follows:

3



dxj(t)

dt
= fj(x, t) + gjr(x, t)wr(t) , j = 1, . . . , n; r = 1, . . . , N (2)

for n = 2, N = 1, and
x = (x1, x2)

T = (u, u̇)T denote the response partial amplitudes;
fj(x, t), gjr(x, t) are continuous deterministic functions of the state variables x and

time t;
wr(t) = w1(t) = ξ(t) is the covariance-stationary random noise with zero, possess-

ing the characteristics of a Markov process; in general, is this process not delta-
correlated.
The response PDF is then governed by the FPE:

∂p(x, t)

∂t
= − ∂

∂xj

(κj(x, t) · p(x, t)) +
1

2

∂2

∂xj∂xk

(κjk(x, t) · p(x, t)) (3)

Parameters κj(x, t) and κjk(x, t) represent the first and second derivative moments,
generally referred to as drift and diffusion coefficients, respectively. If the input ran-
dom processes are covariance stationary and ergodic, then their correlation functions
depend only on the difference τ = t1 − t2, and parameters κj(x, t) and κjk(x, t) can
be expressed as:

κj(xt, t) = fj(xt, t)+

∫ 0

−∞
gls(xt+τ , t+ τ)

∂

∂xl

gj,r(xt, t)Rrsdτ , (4a)

κjk(xt, t) = gjr(xt, t)

∞∫
−∞

gkr(xt+τ , t+ τ)Rrr(τ)dτ (4b)

j, k, l = 1, . . . , n, r, s = 1, . . . , N

where Rrr(τ) is the auto-correlation function of the input process wr(t). In the present
case, only one process acts, so that wr(t) = ξ(t), and, consequently, Rrr(τ) = R(τ).

The determination of the response PDF is addressed in two scenarios: (i) when
the eigen-frequency ω0 nearly matches the vortex-shedding frequency ωs with only a
small detuning ∆ = |ω0 − ωs| < ∆l for some limit value ∆l, leading to a stationary
response and a time-independent PDF; (ii) when both frequencies significantly differ,
∆ > ∆l.

In the first case, the is treated as homogeneous, resulting in a reduced FPE. Stochas-
tic averaging can be applied due to small-order terms, facilitating a solution in phase
space coordinates without expecting beating effects.

In contrast, if the detuning ∆ > ∆l is substantial (case ii), the solution to the FPE
is non-stationary. Retaining the left-hand side of the FPE is necessary, and stochastic
averaging is not applicable as it would eliminate the time-dependent processes char-
acterizing the non-stationary response.
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2.1 Stationary case

In the stationary case, the response is characterized by a limit cycle, and the stochastic
averaging method, [7, 16], may be applied to obtain the averaged Itô system. Subse-
quently, the explicit solution to the reduced FPE can be expressed using a stationary
potential; refer to [17] for details. To achieve this, the displacement and velocity vari-
ables may be expressed in trigonometric form as follows:

u(t) = ac cosωt+ as sinωt ,

v(t) = −acω sinωt+ asω cosωt ,
ȧc cosωt+ ȧs sinωt = 0 .

Substitution into the original van der Pol equation gives:

ȧc =2∆sinωt(ac cosωt+ as sinωt)− Pω sinωt cosωt− h

ω
sinωt · ξ(t)

− sinωt[η − ν(ac cosωt+ as sinωt)
2](−ac sinωt+ as cosωt),

(5a)

ȧs = − 2∆ cosωt(ac cosωt+ as sinωt) + Pω cos2 ωt+
h

ω
cosωt · ξ(t)

+ cosωt[η − ν(ac cosωt+ as sinωt)
2](−ac sinωt+ as cosωt) .

(5b)

where ∆ =
ω2
0 − ω2

2ω
is the frequency detuning.

The result of the time averaging over a period 2π (see [18–20] for mathematical
details, and [16] for the engineering approach) can be symbolically written as

dac = Dcdt+ σccdBc , das = Dsdt+ σssdBs (6)

where Dc, Dc are the averaged deterministic parts, σcc, σss denote the parameters of
the spectral density Φξξ(ω), and Bc,s(t) stands for the Wiener process corresponding
to input excitation ξ(t). In the further text, the averaged variables will be denoted
using the same symbols because no confusion can occur, i.e., as = ⟨as⟩, where ⟨•⟩
represents the averaging operator.

The spectral density of the Gaussian random noise in Eq. (1b) is generally con-
centrated around a single dominant frequency ω, the process is not white. Then the
parameters σcc, σss in Eq. (6) are given as

σ2
cc = σ2

ss = 2πΦξξ(ω) (7)

where Φξξ(ω) is the spectral density of the process ξ(t) at frequency ω.
Finally, the the averaged Itô system reads:

dac =
π

ω

[
ηac + 2∆as −

1

4
ν · ac(a2c + a2s)

]
dt+

(π
ω
Φξξ

) 1
2
dBc ,

das =
π

ω

[
−2∆ac + ηas −

1

4
ν · as(a2c + a2s)

]
dt+

π

ω
Pω dt+

(π
ω
Φξξ

) 1
2
dBs .

(8)
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2.1.1 No detuning considered, ∆ = 0

If the stationary solution exists, the partial amplitudes ac and as represent stationary
values and the time derivative in the FPE vanishes. As a result, only reduced FPE is
to be solved:

∂

∂ac

([
ηac + 2∆as −

1

4
ν · ac(a2c + a2s)

]
p

)
− 1

2ω
Φξξ(ω)

∂2p

∂a2c

+
∂

∂as

([
ηas − 2∆ac −

1

4
ν · as(a2c + a2s) + Pω

]
p

)
− 1

2ω
Φξξ(ω)

∂2p

∂a2s
= 0

(9)

together with the boundary conditions:

lim
|ac|+|as|→∞

[
ηac + 2∆as −

1

4
ν · ac(a2c + a2s)

]
p− 1

2ω
Φξξ

∂p

∂ac
= 0, (10a)

lim
|ac|+|as|→∞

[
ηas − 2∆ac −

1

4
ν · as(a2c + a2s) + Pω

]
p− 1

2ω
Φξξ

∂p

∂as
= 0, (10b)

The system of differential equations in Eq. (9, 10) has a closed-form solution for
zero detuning, ∆ = 0, as discussed in [2]. This solution can be expressed using a
stationary potential:

p0(ac, as) = C exp (−Ψ(ac, as)) ,

= C exp

(
η

2S

((
as +

Pω

η

)2

+ a2c −
ν

8η

(
a2s + a2c

)2))
. (11)

The normalization factor C has to be determined numerically for particular parameters
settings.

2.1.2 Small but positive detuning considered, ∆ > 0

Within the lock-in interval, the stationary solution to the reduced Fokker-Planck equa-
tion for partial amplitudes can be searched for in the form of the Galerkin approxima-
tion, employing the known solution for the case of zero detuning:

p(ac, as) = p0(ac, as)

M,k∑
k,l=0

qkl · ak−l
c · als . (12)

where M is the upper limit of stochastic moments included into the analysis.
The coefficients qk,l for k, l = 0, . . . ,M ; k + l ≤ M follow from the linear system
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∞∫∫
−∞

ar−s
c ass

∂

∂ac

((
ηac + 2∆as −

1

4
νacα

2

)
p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als

)
dacdas

+

∞∫∫
−∞

ar−s
c ass

∂

∂as

((
ηas − 2∆ac −

1

4
νasα

2 + Pω

)
p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als

)
dacdas

−
∞∫∫
−∞

ar−s
c assS

[
∂2

∂a2c
+

∂2

∂a2s

](
p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als

)
dacdas = 0,

(13)

where S =
1

2ω
Φξξ(ω), α2 = (a2c + a2s) and r, s = 0, . . . ,M ; r + s ≤ M .

The convergence of the improper integrals in Eq. (13) is ensured by the properties
of the function p0(ac, as). In the degenerate case where s = 0 and r = 0cen be
replaced by the normalizing condition q0,0 = 1.

The series in Eq. (12) consists of polynomial basis functions that meet the pre-
scribed boundary conditions solely through multiplication by the exponentials in p0.
Despite the poor numerical properties of polynomial basis functions, usually resulting
in an ill-conditioned Gram matrix, [21], the construction of the system matrix remains
feasible for small values of M , provided careful attention is given to numerical inte-
gration handling. Several general recommendations are given in [22].

2.2 Non-stationary case

In general, when details within quasi-periods should be kept, the dependence on the
original time coordinate must be retained. We start from the SDE, Eqs (1b), and write
out the FPE in a form adequate to the problem discussed. Indeed, the input and output
processes can be considered as Markovian, and therefore the response PDF of the
system Eqs (1b) can be searched by means of the FPE.

Assuming small but sufficient detuning ∆ ∼ ε so that ∆l < ∆ = |ω0 − ωs| < ∆u,
and considering terms like (η−νu2) · u̇ and Pω2 as of small order ε, along with h ·ξ(t)
being of order ε1/2, the FPE for the stochastic differential equations given by Eq. (1b)
can be constructed in the form:

∂p(x, t)

∂t
= − ∂

∂xj

(κj(x, t) · p(x, t)) +
1

2

∂2

∂xj∂xk

(κjk(x, t) · p(x, t)) (14)

where x = {u, v} with j, k = u, v. The parameters κj(x, t) and κjk(x, t) represent
the first and second derivative moments, known as drift and diffusion coefficients. The
input random process ξ(t) is correlation stationary and ergodic, allowing the relevant
stochastic moments to depend only on the difference τ = t1 − t2. Consequently,
parameters κj(x, t) and κjk(x, t) can be expressed as:

7



κj(xt, t) = fj(xt, t)

κjk(xt, t) = gjr(xt, t)
∞∫

−∞
gkr(xt+τ , t+ τ)Rrr(τ)dτ

(15)

where Rrr(τ) is the auto-correlation function of the wr(t) input process, Rrr(τ) =
R(τ). In this particular case,

κu = v, κv = (η − νu2) · v − ω2
0u− Pω2 cosωt,

guu = guv = gvu = 0, gvv = h,

κuu = κuv = κvu = 0, κvv = gvv

∫ ∞

−∞
gvvRvv(τ)dτ = h2σ2

ξξ = h2 · S,
(16)

where S[s] is the variance of the process ξ(t) and the FPE can be readily written out
as follows:

∂p(x, t)

∂t
=− ∂

∂u
(vp(x, t))

− ∂

∂v

((
(η−νu2)v − ω2

0u−Pω2 cosωt
)
p(x, t)

)
+

1

2
h2S

∂2p(x, t)

∂v2
,

(17)

together with initial and boundary conditions:

a) lim
u,v→±∞

p(u, v, t) = 0 b) p(u, v, 0) = δ(u, v) . (18)

The solution procedure for Eq. (17) along with conditions in Eqs (18) can be
executed using the Galerkin series, formulating the solution as:

p(u, v, t) = p0(u, v)

M,k∑
kl=0

qkl(u, v, t) (19)

The series in Eq. (19) represents an approach to a weak solution to the FPE equation
in the probabilistic mean of the term. The elements qkl are composed similarly to
those in Eq. (12), formulated as:

qkl(u, v, t) = qkl(t)Lk−l(αu)Ll(βv), α2 =
ωbω

2
0

h2S
, β2 =

ωb

h2S
, (20)

where Lr−s(αu) or Hs(βv) are l’Hermite polynomials. Polynomial orders are intro-
duced such that within one value of k = 1, ..,M , the polynomials of equivalent order
k are addressed. The function p0(u, v) serves as a weight during the construction of
the relevant differential system. It can be adopted in the form of Boltzmann’s solu-
tion to a related problem without damping and external excitation. For details, refer
to [23–25], and other relevant papers and monographs, particularly:

p0(u, v) = D · exp(− 2ωb

h2S
H(u, v)) (21)
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where D is the dimensionless normalizing constant, which can be put for now D = 1.
H(u, v) represents the Hamiltonian function of the basic system. In particular:

H(u, v) =
1

2
ω2
0u

2 +
1

2
v2 (22)

which implicates:

p0(u, v) = pu(u) · pv(v) ⇒ pu(u) = exp(−αu2), pv(v) = exp(−βv2),
(23)

indicating that u, v are stochastically independent Gaussian processes on a level of the
zero-th approximation.

There are several options for approximation the functions qj(u, v, t) in Eq. (19).
The generalized method of stochastic moments, [7], can be based on the selection of
l’Hermite polynomials, orthogonal with the weight given in Eqs (21); enables simpli-
fication in subsequent steps. The generalization involves the introduction of moments
with polynomials, not solely relying on factors like uk−lvl. However, the physical
interpretation may become somewhat more intricate compared to using the series in
Eq. (12).

The weak formulation with respect to Eq. (17) can be obtained using product of
l’Hermite polynomials in variables u, v as the test functions. After integration over the
whole space and several per partes operations, and respecting the boundary conditions
with respect to u, v → ±∞, one obtains:

∂

∂t
E{Φ(u, v)} = h2S E

{
∂2Φ(u, v)

∂v2

}
+ E

{
∂Φ(u, v)

∂u
v

}
+

E

{
∂Φ(u, v)

∂v

(
ηv − νu2v − ω2

0u− Pω2 cosωt
)} (24)

where E{·} represents the operator of mathematical mean value with respect to un-
known PDF p(u, v, t). The series (19) contains unknowns qkl(t) and initial PDF
p0(u, v). Therefore it is convenient to express Eq. (24) with reference to the initial
PDF p0(u, v) given by Eq. (21). Taking into account Eq. (19), following general rela-
tion between mathematical mean value of a function Φ(u, v) with respect to p(u, v, t)
and p0(u, v) can be established:

E{Φ(u, v)} =

∞∫∫
−∞

Φ(u, v)p(u, v, t)dudv

=

∞∫∫
−∞

Φ(u, v)p0(u, v)

M,k∑
kl=0

qkl(u, v, t)dudv

=

M,k∑
kl=0

E0{Φ(u, v)qkl(u, v, t)}

(25)

9



-4

-2

0

2

4

6

a

a M=0

0.00

0.02

0.04

0.06

0.08

0.10

0.12 p,p0

a 0.00

0.02

0.04

0.06

0.08

0.10

0.12 p,p0

a

-4

-2

0

2

4

6

a

a M=2

0.00

0.02

0.04

0.06

0.08

0.10

0.12 p,p0

a 0.00

0.02

0.04

0.06

0.08

0.10

0.12 p,p0

a

1 2 3 4 5
-6

-4

-2

0

2

4

6

a

a M=5

-6 -4 -2 0 2 4 6

0.00

0.02

0.04

0.06

0.08

0.10

0.12 p,p0

a

1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12 p,p0

a

Figure 1: The Galerkin approximation of the stationary cross-PDF for increasing
number of stochastic moments and detuning value ∆ = 0.10

The particular choice of the l’Hermite polynomial series of increasing degree enables
the formulation of a system of ordinary differential equations approximating the time-
dependent term qkl(t) in Eq. (20). However, this formulation has not yet been com-
pleted.

3 Numerical example

The response of the van der Pol oscillator in Eqs (1a) or (1b) is stationary in the
lock-in region, which, for the natural frequency of the van der Pol system at ω0 = 1,
corresponds to interval ω ∈ (0.85, 1.35). In terms of detuning, the lock-in interval
corresponds to ∆ ∈ (−0.09, 0.13). Other values used in the numerical example are
η = 1/2, ν = 1/4, and P = 1.

The PDF of the stationary response, computed using the proposed procedure, is
illustrated in Fig. 1. PDFs of both partial amplitudes ac, as are shown for three values
M = 0, 2, 5 and a non-negligible value of detuning δ = 0.05. In each row, i.e., for each
choice of M , the contour plot of the estimated cross-PDF p(ac, as) is shown on the left.
The middle plot depicts the sections of the PDF for fixed values ac = {−3/2.0, 3/2}
and the right-hand plot illustrates the sections for the selected values as = {2, 3, 4}.
The sections and the corresponding colors are indicated as horizontal/vertical lines in
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the left-hand plots. The stochastic parameters used in all examples are h = 1 and
S = 1.

The first row for M = 0 shows the analytical solution for which no Galerkin cor-
rection is applied; the sections are plotted in dashed curves and are repeated in all
remaining graphs as the reference values. Note, for example, that in the left column
the blue and green dashed lines coincide due to the symmetry in the ac variable. The
curves corresponding to the PDF estimates for higher values of M are shown in solid.
It is apparent from the plot that the most significant contribution to the analytic solu-
tion is represented by the low value of M , while the higher order moments bring no
significant changes to the PDF estimate.

4 Concluding remarks

A comprehensive analytical-numerical approach for estimating the probability density
function of the solution to the stochastic differential equation has been demonstrated
using the single-degree-of-freedom van der Pol equation subjected to combined har-
monic and random excitation as an illustrative example. Three distinct response and
solution regimes have been identified: stationary with no detuning, allowing for an
explicit solution based on stochastic averaging of partial amplitudes; stationary with
small detuning, where the solution was obtained through Galerkin approximations
based on polynomial basis functions; and a non-stationary case characterized by a
detuning larger than a certain limit. The procedure for the non-stationary solution
was outlined, relying on a modified Galerkin method with orthogonal polynomials
as basis and test functions, followed by solving the Ordinary Differential Equation
(ODE) system to obtain the time-dependent stochastic moments of the response. This
non-stationary solution procedure is an ongoing area of research.
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