
1 

 

 

Abstract 
 

Potential flow around two equal-radius cylinders is derived analytically and applied 

to generate the curvilinear fiber path of variable-stiffness composite plates with two 

circular holes. As complex variable theory and conformal mapping are used to 

generate the potential flow around two equal-radius cylinders, the location and size of 

the two equal-radius circular holes are arbitrary. By changing the angle of incoming 

flow, the global fiber angle of a variable-stiffness lamina can be simulated and the 

local fiber orientation angle at any point is determined by the global potential flow 

field. Buckling performance of variously-shaped variable-stiffness composite plates 

with two circular holes are studied via discrete Ritz method. A three-dimensional 

sampling optimization method is then adopted to optimize the curvilinear fiber 

configurations of variable-stiffness composite plates, and its buckling performances 

are compared with those of constant stiffness composites with straight fibers. 

Significant improvements on load-carrying capacity can be achieved compared to 

straight ones, demonstrating that using potential flow is one of the most efficient way 

to generate curvilinear optimal fiber path with maximum load-carrying capacity for 

variable-stiffness composite plates with material discontinuity. Moreover, discrete 

Ritz method exhibits good precision and stability for buckling analysis of variable-

stiffness composite plates with complex geometries. 
 

Keywords: discrete Ritz method, potential flow, conformal mapping, variable-

stiffness composite plates, buckling, optimization. 
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1  Introduction 
 

With the mature of advanced manufacturing techniques such as automated fiber 

placement and additive manufacturing, it is possible to define the fiber path in a 

curvilinear manner with highly flexible design freedoms, producing variable-stiffness 

composite structures that may significantly enhance structural efficiency. As the fiber 

path of variable-stiffness composites (VSC) can be continuously altered within the 

plate domain, VSC provide the possibility to tailor the stiffness of structures at a point-

by-point level. Consequently, VSC structures exhibit superior performance in load-

carrying capacity situations when compared with constant-stiffness composites (CSC) 

with straight fibers. It is demonstrated that the buckling load of composite fuselage 

panels improved as higher as 78% [1] as compare to quasi-isotropic laminates, and 

the weight of aircraft wings can be reduced about 20% [2] when using VSC as 

compare to CSC. The load-carrying capacity enhancement and weight reduction 

potential of VSC promote it to be the best lightweight material for the next generation 

aerospace engineering. 

 

Aircraft structures such as fuselages and wings have cutouts or openings that sever as 

windows and doors, or ensure electrical, fuel, and hydraulic lines are accessible for 

maintenance and reduce the weight of structures. Cutouts in such thin-walled 

composite structures may cause material discontinuity and stress concentration, alter 

the mass and stiffness of the structure, and hence significantly change the buckling 

and failure performances. Understanding the buckling behavior and improve its load-

carrying capacity is of great importance for their practical application in engineering. 

Curving the fibers smoothly and continuously within the layer provides an advanced 

tailoring option to account for material discontinuities and non-uniform stress states, 

as well as modifying the principal load paths to enhance load-carrying capacity [2]. 

 

 

In general, two main strategies are adopted for generating the continuous fiber 

trajectories around cutouts: using potential flow function or along the vectors’ 

directions of maximum principal stresses. The potential flow can generate perfect 

streamlines around cutouts with relatively simple geometries, e.g. circular or 

elliptical. With more complex geometries in real engineering structures, the analytical 

potential flow may be difficult to derive or even impossible. The maximum principal 

stress can be easily obtained by FEM, but their vectors need to be regulated by 

specialized algorithm to generate smooth and continuous fiber path around holes. 

Actually, the potential flow in fluid mechanics and the stress field in elasticity can be 

solved by the complex variable theory. Recent literatures reported that the potential 

flow around multiple circular cylinders [3-8] and polygonal shaped cylinders [9] can 

be calculated analytically. Moreover, engineering structures with multiple cutouts and 

complex geometries are commonly encountered, few studies investigated the VSC 

plates with multiple holes and complex geometries. One obstacle is the generation of 

complex potential flow for characterizing curvilinear fiber path, and another difficulty 

is the numerical simulation of plates with complex geometries, which requires re-

formulation and analysis of FEM. 
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Considering the advantages of potential flow for constructing the continuous fiber 

path over cutouts and the convenience of discrete Ritz method (DRM) [13, 14] for 

solving mechanical problems in an arbitrarily geometrical domain, this study derived 

analytical potential flow to generate the curvilinear fiber trajectories around two 

equal-radius circular holes and conducted DRM based buckling analysis for 

variously-shaped VSC plates with two circular holes. Standard buckling formulas for 

arbitrarily shaped VSC plates are derived, and convergence and accuracy of DRM are 

investigated and verified with previous studies. After that, three-dimensional 

sampling optimization (3DSO) method [10] based optimization is conducted for 

maximization of buckling load of VSC plates with different boundary conditions and 

loadings. Optimal results are compared to those of CSC plates with straight fibers.  

2  Fiber path characterization based on potential flow 
 

Complex variable theory is an important mathematical tool for the study of inviscid 

irrotational fluid flow, otherwise known as potential flow. There are a number of 

applications for potential flow, including describing the velocity field on aerofoils, 

groundwater flow, water waves, electro-osmotic flow, etc. Using Milne-Thomson 

circle theorem [3, 4], complex potential functions can be derived to model uniform 

potential flow around a circular cylinder and non-uniform potential flow due to a 

singular point outside the cylinder. However, modelling the fluid flow over multiple 

cylinders is more complicated. Recent studies [5-8] show that the potential flow 

around two equal-radius cylinders can be computed analytically. As streamline 

represents an instantaneous tangent path of a massless particle moving with the flow 

[1], it is the contour of the flow velocity field. In order to calculate the local fiber 

orientation angles in a variable stiffness lamina, the components of the velocity field 

must be calculated. 

 

Figure 1: A multiply connected circular domain Dζ with smaller circular discs 

Let Dζ be a unit multiply connected circular domain, defined by |ζ| = 1 (  ), with 

M smaller circular disks excised. The boundary of the unit circle Dζ is C0 and the 

boundaries of M smaller circular discs enclosed by C0 are {Cj | j = 1, 2, …, M}. Let 
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the center and radius of Cj be denoted by 
j   and 

jr  , respectively, as shown 

in Figure 1. In general, such circular domains are canonical types of multiply 

connected domains [11], and some kind of bounded multiply connected circular 

domain Dζ can be conformally mapped (by some function z(ζ)) to an unbounded fluid 

region Dz outside of any given set of obstacles [6, 9]. 

 

Let –(i/2π)W0(ζ, β) be the complex potential associated with an incompressible flow 

in Dζ which is irrotational except for a single point vortex singularity at ζ = β. Assume 

all circulations around the inner circular discs are zero. The function W0(ζ, β) is 

analytic everywhere in Dζ except for a logarithmic singularity at ζ = β corresponding 

to the point vortex. Such that 

 

0Re[ ( , )] 0, on | | 1W   = =                                         (1) 

and  

0Re[ ( , )] , on , 1, 2,...,j jW c C j M  = =                                (2) 

where cj are real constants. The above conditions ensure that all boundaries are 

streamlines. In this case, selection Equation (1) provides a normalization that uniquely 

identifies W0(ζ, β). 

 

Crowdy and Marshall [5] demonstrated that the following complex potential W0(ζ, β) 

satisfies all above conditions:  

( ) 10

( , )
log

( ,
,

| | )
W

  




  


−

 
=  

 
                                       (3) 

where ω(ζ, β) is a function of two complex variables, and it is a classical infinite 

product formula defined as [6, 7, 12]:  

( ( ) )( ( ) )
( , ) ( )

( ( ) )( ( ) )
k

k k

k k

     
    

     

 − −
= −

− −
                              (4) 

where the product is over all compositions of the basic Möbius maps [6] {
1{ , | 1,2,..., }k k k M  − =  (M is the number of smaller discs in domain Dζ) excluding the 

identity and all inverse maps.  

In the doubly connected case, Dζ is taken to be a concentric annulus r < |ζ| < 1 with 0 

< r < 1, and there is only one Möbius map 2

1( ) r  = . Accordingly, the infinite 

product Equation (4) is then over all mappings of the form:  

 
2{ ( ) | 1}k

k r k  =                                                (5) 

 

Substitute Equation (5) into Equation (4) yields:  

 

( ) 2
,  ( , )F r

C

 
  


= −                                            (6) 

where  
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Substitute Equations (6) and (7) into Equation (3) yields:  
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                                        (8) 

 

Moreover, it is known that the required complex potential for uniform flow with speed 

U0 in a direction making angle α with the positive real axis is given by [27]:   

 

( ) ( )1 0 0, ,i iW U We e    
 

−  
= − 

  
                            (9) 

 

Substitute Equation (8) into Equation (9) yields: 

( ) 10 0
1 sin ( , ) ( ), ,i iiU U

W e K r e K r   





− − = + −          (10) 

where β is taken to be real and set as β = r1/2, and where we define 

( , )
( , )

( , )

F r
K r

F r

 


 


=


                                      (11) 

As the first term in Equation (10) is a constant, it is discarded.  

Lastly, the streamlines for steady uniform flow around two equal circular cylinders 

can be obtained by using the Möbius conformal mapping from the annulus r < |ζ| < 1: 

 ( )
r

Z R
r






 +
=   − 

                                               (12) 

where R is a real constant and taken as R = r1/2. By using the above conformal 

mapping, the annulus r < |ζ| < 1 can always be mapped to two equal-radius cylinders 

both centered along the real-axis and symmetrically disposed about the origin. R and 

r are real parameters which determine the radius of each cylinder and the distance 

between them. Moreover, if the parameter r is taken as a pure imaginary number, the 

size and location of the two equal-radius cylinders will alter.   

   The complex velocity around the two circular cylinders can be obtained in terms of 

the complex potential function [9, 11]:  

1( , )
c c c

dW dZ
V u iv

d d

 

 
= − =                                    (13) 

where uc and vc are the real and imaginary components of complex velocity Vc 

respectively, which are the function of coordinate (x, y) in the complex plane. Figure. 

2 depicts the streamlines for steady uniform flow around two equal circular cylinders 

with α = 0°.  
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Figure 2: Streamlines for steady uniform flow around two equal circular cylinders 

Consider the variable stiffness laminate with two circular holes, the streamlines 

constructed above are the fiber path of a lamina. The angle α in Equation (10) 

represents the global fiber orientation of a lamina. The local fiber orientation angle θ 

at any point (x, y) in the complex plane can be calculated via:  

( , )
( , ) arctan

( , )

c

c

v x y
x y

u x y


 
=  

 
                                       (14) 

Figure 3 demonstrates the fiber paths of variable-stiffness laminas with different 

global fiber orientation α and its corresponding local fiber orientation angle θ.  

 
Figure 3: Variable-stiffness laminas with different global fiber orientation α and its 

corresponding local fiber orientation angle θ for the VSC plates with two circular 

holes 

α = 30° α = 60°

α = -45° α = 90°

θ
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3  Numerical results 

In all of the following examples, composite material properties are given as: E1 = 

130GPa, E2 = 10GPa, G12 = G13 = G23 = 5GPa, ν12 = 0.35, and ply thickness is t = 

0.15mm. Accounting for different boundary conditions and loadings, stacking 

configurations of variously-shaped VSC plates with two equal-radius circular holes 

are optimized to maximize the critical buckling load, including square and triangular 

plates. The three-dimensional sampling optimization (3DSO) method is used to 

perform buckling optimization [10]. Two kinds of symmetrical VSC plates are 

considered: 16-layer and 48-layer laminate with interval of ply orientation 5°. The 

number of objective function calls is denoted by NF. Optimal buckling results and 

mode shapes are provided. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Square plates with two circular holes 

A square VSC plate having dimensions a = b = 120mm, with two equal-radius circular 

holes located at O1(-26.4mm, 0) and O2(26.4mm, 0) with radius r0 = 16.2mm, 

subjected to axial compressive and shear loads (single or combined), under simply 

supported (SSSS) or clamped (CCCC) boundary conditions on four edges, are 

presented in Figure 4a. 60×60 Gauss points are used to discretize the VSC plate, where 

10×10 meshes are generated and each background mesh consists of 6×6 Gauss points, 

the discretization model is shown in Figure 4b. The Gauss points in the two circular 

holes are with zero stiffness. Convergence study for the square VSC plate [45/-

452/45/-45/40/902]s under SSSS boundary condition is presented in Table 1. 

Increasing the number of terms in the Legendre polynomials from 12×12 to 19×19 

results in convergent results for the first eight buckling load factors. Accounting for 

both efficiency and accuracy of the buckling analysis, 18×18 terms are used in the 

Legendre polynomials for optimization. The inplane stress resultants ( , ,x y xyN N N ) of 

the square VSC plate [45/-452/45/-45/40/902]s with two circular holes, under SSSS 

boundary condition, subjected to uniaxial compression, are presented in Figure 5, and 

compare with those of FEM results. The stress concentration occurs around the 

boundaries of the two holes, and the present DRM results are in excellent agreement 

with those of FEM, verifying the accuracy of DRM for prediction of inplane 

deformation.  
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Figure 4: Geometry and discretization models of square VSC plate with two circular 

holes: a) Geometric model and loading; b) Discretization model (green points are 

with zero stiffness) 

 

 

Buckling optimal results are presented in Table 2, and compare with optimal results 

of CSC with straight fibers. A significant improvement in the buckling loads of 

optimal VSC plates with potential flow-based curvilinear fiber paths has been 

demonstrated as high as 22.59%. Figure 6 illustrates some of the first four optimal 

buckling mode shapes for VSC plates. Lastly, the optimal buckling results of 48-layer 

symmetrical VSC plates under uniaxial, biaxial compression, combined loading are 

shown in Table 3. According to Tables 2 and 3, the computational cost of a 48-layer 

laminate is approximately three times that of a 16-layer laminate, which indicates that 

computation expenses for 3DSO method are almost linearly related to the number of 

layers in the laminate, since sampling does not scale exponentially with increasing 

design variables. In Figure 7, a convergence picture is shown for a 48-layer square 

VSC plate subjected to uniaxial compression under CCCC boundary condition. The 

sampling optimum is extremely close to the final optimum. 

 

Solution size 

( M N ) 

Mode  

1 2 3 4 5 6 7 8 

12×12 17.7641  22.3389  31.3671  41.3625  47.6108  48.7098  64.3150  69.4361  

14×14 17.7924  22.2795  31.3702  40.2842  47.0341  47.7262  64.4736  67.8380  

16×16 17.8200  22.2753  31.4484  39.6329  46.8073  46.9710  64.9073  67.0888  

17×17 17.8385  22.2641  31.4212  39.4054  46.7364  46.8412  64.8695  66.9171  

18×18 17.8281  22.2487  31.3591  39.1951  46.5287  46.8145  64.7773  66.8632  

19×19 17.8416  22.2469  31.3505  39.0509  46.3767  46.8031  64.7771  66.7736  

FEM 17.8943  22.1254  31.4977  37.8240  45.0400  46.6043  63.9963  66.2121  

Table 1: Convergence of first eight buckling load factors λ = λcrb
2/D0 for the 16-

layer square VSC plate [45/-452/45/-45/40/902]s with two circular holes, under SSSS 

boundary condition, subjected to uniaxial compression 

x, ξ

y, η

a

b

a) 

Nx

Nx

1

2

3
4

o

d

b) 

O1 O2

r0 r0

Nxy

Nxy

Ny
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Figure 5: Inplane stress resultants ( , ,x y xyN N N ) of the square VSC plate [45/-452/45/-

45/40/902]s (curvilinear fiber path) with two circular holes, under SSSS boundary 

condition, subjected to uniaxial compression, and compare with FEM results. 

 

 

 

 

 

 

 

 

 

DRMFEM
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Load (N/mm) BC 
VSC plates 

Increase (%)  
Φopt λopt NF 

Uniaxial compression 
SSSS [45/-452/45/-45/40/902]s 17.828  776 15.69 

CCCC [0/-80/03/70/-80/80]s 43.937  1144 9.51 

Biaxial compression 
SSSS [50/-50/-45/45/-45/-45/402]s 8.2086  1104 20.23 

CCCC [-65/80/50/50/-35/-35/-35/50]s 16.959  1144 0.32 

Biaxial compression 

and shear 

SSSS [452/-502/40/-55/35/-65]s 8.0330  1024 22.59 

CCCC [352/90/-852/302/-80]s 16.757  1272 4.61 

 

 

Load (N/mm) BC 
CSC plates 

Increase (%)  
Φopt λopt NF 

Uniaxial compression 
SSSS [40/-40/45/-45/-50/-55/70/85]s 15.411  1340 15.69 

CCCC [-10/20/15/-55/-70/652/-80]s 40.120  1104 9.51 

Biaxial compression 
SSSS [45/-45/-45/50/-50/50/902]s 6.8276  1652 20.23 

CCCC [-70/70/90/30/-55/65/80/75]s 16.905  1588 0.32 

Biaxial compression 

and shear 

SSSS [-50/45/502/-452/-35/-80]s 6.5529  1468 22.59 

CCCC [65/30/80/85/-85/-403]s 16.018  1676 4.61 

 

Table 2: Optimal buckling load factor λopt = λcrb
2/D0 of 16-layer square VSC and 

CSC plates with two circular holes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Load (N/mm) BC VSC plates (curvilinear fiber path) 

Φopt λopt NF 

Uniaxial compression SSSS [(-45/45)2/45/-453/454/(-40/45)2/-40/906/-40]s 14.260  4520 

CCCC [5/-10/5/03/-70/75/03/-75/03/75/802/-80/80/-802/80/-80]s 29.675  4480 

Biaxial compression (Nx/Ny = 1) SSSS [-502/504/45/-50/45/-455/45/-453/402/-40/403]s 6.6734 3616 

CCCC [-85/903/20/-15/905/04/(90/0)2/04/90]s 13.463  2792 

Biaxial compression and shear 

(Nx/Ny = Nxy/Ny = 1) 

SSSS [-50/456/-50/40/-55/404/-552/-60/35/-656]s 6.3940  4812 

CCCC [302/90/302/-852/302/-852/305/-808]s 11.885  3696 

Table 3: Optimal buckling load factor λopt = λcrb
2/D0 of 48-layer square VSC plates 

with two circular holes 
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Figure 6: First four mode shapes of the optimal square VSC plates: a) [45/-452/45/-

45/40/902]s with SSSS boundary under uniaxial compression; b) [0/-80/03/70/-

80/80]s with CCCC boundary under uniaxial compression; c) [452/-502/40/-55/35/-

65]s with SSSS boundary under biaxial compression and shear; d) Clamped [352/90/-

852/302/-80]s with CCCC boundary under biaxial compression and shear. 

43.943 50.209 70.963

a)

b)

17.828 22.249 31.359 39.195

c)

8.033 20.85712.721 19.718

d)

43.937

16.757 33.39521.835 31.800
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Figure 7: Convergence process of 3DSO for optimization of the 48-layer square 

VSC plate with two circular holes, under CCCC boundary condition, subjected to 

uniaxial compression 

 

 

 

3.2 Triangular plates with two circular holes 

A triangular VSC plate having three vertices located at (x1, y1) = (-60, -60)mm, (x2, 

y2) = (60, -60)mm, (x3, y3) = (0, 60)mm, with two equal-radius circular holes located 

at O1(-4.2, 0)mm and O2(16.2, -29.4)mm with radius r0 = 11.52mm, subjected to 

uniform compressive load N on all edges, under simply supported (SSS) or clamped 

(CCC) boundary conditions on three plate edges, is presented in Figure 8a. The 

smallest rectangular domain to cover the triangular VSC plate has dimensions of a = 

b = 120mm, and the rectangular domain is regarded as a variable stiffness system with 

zero stiffness in the cutout domain and nonzero stiffness in the triangular plate 

domain. As shown Figure 8b, 80×80 Gauss points are used to discretize the perforated 

triangular VSC plate. In Table 4, convergence study is performed for the triangular 

VSC plate [-35/-30/75/40/-10/55/65/75]s with two circular holes under SSS boundary 

condition. As the number of terms increases from 12×12 to 19×19, the first eight 

buckling load factors converge. Accordingly, 17×17 terms are used in DRM in order 

to ensure the accuracy of the buckling analysis and optimization. In Figure 9, the 

inplane stress resultants ( , ,x y xyN N N ) of the triangular VSC plate [90/10/0/-85/-

55/80/60/-60]s with two circular holes, under clamped boundary condition, subjected 

to uniform compressive load N, are compared with those of FEM results. It is observed 

that the stress concentration occurs around the two holes and between one hole and 

the edge of the triangular plate, and the inplane stress resultants of DRM are in 

accordance with those obtained by FEM. Demonstrating the accuracy of DRM in 

predicting the inplane deformation behavior of triangular VSC plates with complex 

geometries.  

3DSO Sampling data

3DSO Through thickness design data
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Solution size 

( M N ) 

Mode  

1 2 3 4 5 6 7 8 

12×12 15.0087  30.1965  35.2108  46.8037  53.1342  60.7267  72.1749  77.5758  

14×14 14.9166  29.9930  34.9033  46.1550  52.4161  59.6768  72.6348  77.1266  

16×16 14.8395  29.7958  34.6934  45.6666  51.9519  59.1407  68.0215  73.0456  

17×17 14.7967  29.6628  34.5905  45.4742  51.7620  58.8830  73.0546  76.2546  

18×18 14.7693  29.6047  34.5503  45.2866  51.5383  58.7250  73.0835  75.9781  

19×19 14.7468  29.5239  34.5035  45.1269  51.4616  58.5789  73.0624  75.7712  

FEM 14.4845  29.0460  34.3117  44.1772  50.6877  57.9848  72.2207  74.5944  

Table 4: Convergence of the first eight buckling load factors λ = λcrb
2/D0 for the 16-

layer triangular VSC plate [-35/-30/75/40/-10/55/65/75]s with two circular holes, 

under SSS boundary condition, subjected to uniform compressive load N on all edges 

 

Optimal buckling results for triangular VSC plates are reported in Table 5 and are 

compared with those of the CSC optimal results with straight fibers. The use of 

curvilinear fiber paths constructed on potential flow results in approximately 25% 

improvement on buckling load. There is no doubt that fiber trajectory around circular 

holes improves load transfer efficiency. The first four buckling mode shapes for the 

optimal triangular VSC plates in Table 5 are shown in Figure 10. The optimal 

curvilinear fiber paths for the VSC plate [90/10/0/-85/-55/80/60/-60]s are 

demonstrated in Figure 11. 

 

 
Figure 8: Geometry and discretization models of triangular VSC plate with two 

circular holes: a) Geometric model and loading; b) Discretization model 
 

 

Table 5: Optimal buckling load factor λopt = λcrb
2/D0 of 16-layer triangular VSC and 

CSC plates with two circular holes 

x, ξ

y, η

O

a

b

a) 

1

23

N

b) 

O1

O2

r0

r0

BC 
VSC plates (curvilinear fiber path) CSC plates 

Increase (%)  
Φopt λopt NF Φopt λopt NF 

SSS [-35/-30/75/40/-10/55/65/75]s 14.840  816 [35/-40/-45/75/0/602/45]s 11.825  856 25.13 

CCC [90/10/0/-85/-55/80/60/-60]s 36.072  736 [0/90/04/90/0]s 29.963  696 20.39 



14 

 

 
Figure 9: Inplane stress resultants ( , ,x y xyN N N ) of the triangular VSC plate [90/10/0/-

85/-55/80/60/-60]s (curvilinear fiber path) with two circular holes, under CCC 

boundary condition, subjected to uniform compressive load N, and compare with FEM 

results. 

 

DRMFEM
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Figure 10: First four buckling mode shapes of the optimal triangular VSC plates: a) [-

35/-30/75/40/-10/55/65/75]s with SSS boundary; b) [90/10/0/-85/-55/80/60/-60]s with 

CCC boundary. 

 

 

 

 

 

 

 
Figure 11: Optimal curvilinear fiber paths [90/10/0/-85/-55/80/60/-60]s with CCC 

boundary condition 

36.072 58.833 69.638 80.627

a)

b)

14.840 29.663 34.591 45.474

90° 10° 0° -85°

-55° 80° 60° -60°

[90/10/0/-85/-55/80/60/-60]s
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4  Conclusions and Contributions 
 

The potential flow around two equal-radius circular cylinders are derived and applied 

to generate the curvilinear fiber paths of VSC plates with two circular holes. By 

changing the incoming flow angle of potential flow, the global fiber angle orientation 

for an individual layer can be simulated and the local fiber angle can be obtained at 

any point in the plate domain in terms of the global potential flow field. DRM is 

developed for buckling analysis of perforated VSC plates, and convergence and 

accuracy of DRM are compared and verified with previous results as well as FEM. 

DRM can provide high precision results with relatively low degree of freedom as a 

global trial function is used. Moreover, as extended interval integral and Gauss 

quadrature are used within a rectangular domain for numerical integration, with 

sufficient Gauss points, integration over an arbitrarily shaped plate can be realized by 

using variable stiffness within the cutouts in the rectangular domain. In this manner, 

the energy formulas and computation procedures of DRM are standard, making it 

powerful to solve the static and buckling problem of VSC plates in arbitrary 

geometries. 3DSO is adopted to perform stacking configurations optimization of VSC 

plates and CSC plates, and comparison results indicate that the potential flow based 

curvilinear fiber paths significantly improve the buckling load-bearing capacity of 

VSC plates as compare to CSC plates. As complex potential flow can generate 

continuous fiber path over complex geometric domain, it exhibits potential for further 

application to more complex 2D and 3D problems for design optimization of VSC 

structures. 
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