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Abstract 
 

A numerical model to predict the thermal buckling analysis of thin-walled porous 
functionally graded (FG) beams is presented in this work. A geometric nonlinear 
algorithm that uses a 1D numerical model with a spatial beam finite element is 
employed. The Green-Lagrange deformation tensor defines small deformations. The 
Euler-Bernoulli theory for bending and the Vlasov theory for torsion are used to create 
the finite element model. Nonlinear analysis uses the UL (updated Lagrangian) 
incremental formulation with the principle of virtual works. The cross-sectional 
displacement field accounts for warping torsion and large rotations. Material 
properties are assumed to vary continuously through the wall thickness based on 
power-law distribution. The proposed beam model analyses buckling in cases of 
uniform, linear, and nonlinear temperature distribution through the thickness of the 
cross-sectional walls. The analysis also considers the temperature dependence of the 
mechanical properties of the material. Numerical results investigate critical buckling 
temperatures and post-buckling responses for different thin-walled sections with 
various configurations. These configurations include boundary conditions, geometry, 
FG skin-core-skin ratios, and power-law index. The numerical algorithm's accuracy 
and reliability are compared with established software packages' 2D finite element 
models. The comparison shows excellent agreement with the results obtained with 
shell models. 
 

Keywords: numerical analysis, buckling and post buckling, thermal environment, 
functionally graded beam, thin-walled cross-section, porous material, temperature 
distribution. 
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1  Introduction 
 

Functionally graded (FG) materials with uniform porosity distribution are a new class 
of advanced composite materials. Most often, FG materials are composed of ceramic 
and metal, and their material properties change continuously across the thickness of 
the cross-section. Compared to traditional composites, FGMs have several advantages 
such as high durability, toughness, thermal and corrosion resistance.  
 

The thermal buckling and vibration of FG thin-walled beams and structures have 
become interesting topic for an increasing number of researches due to the complex 
behaviour of these lightweight structures with improved thermomechanical 
properties, but only a few of them are cited here [1–5]. However, in the case of 
buckling of  FG porous beam in thermal environment, the literature is quite scarce  
[6–11]. 
 

The paper discusses a beam model for the thermal buckling of thin-walled porous 
beams made of functionally graded materials (FGMs). The model is based on the 
Euler-Bernoulli-Navier bending theory and Vlasov torsion theory while assuming 
large displacement and small strains. The equilibrium equations of the finite elements 
are developed using an updated Lagrangian formulation, and the Newton-Raphson 
method is used as an incremental iterative solution scheme. The material properties 
are assumed to be graded across the wall thickness, and three different cases of 
temperature rise over wall thickness are considered, which are uniform, linear, and 
nonlinear. The numerical results are obtained for FGM beams with different boundary 
conditions, porosity coefficient, and temperature distributions to investigate the 
effects of the power-law index on the critical buckling temperature and post-buckling 
response.  
 

The main objective of the paper is to present the developed beam model for the 
thermal buckling analysis of FG thin-walled beam structures and to discuss the 
influence of the porous volume fraction buckling behaviour. The analysis is based on 
the numerical model developed by the authors [12–14] and verified by benchmark 
shell examples.  

 

2  Methods 
 

Consider an imperfect FG beam with evenly disperse porosities. The material 
properties vary continuously through the wall thickness according to the power law 
distribution [7]: 

 

P (n,T) = [Po (T) − Pi (T)] ∙ Vc (n) + Pi (T) − 0,5ρ ∙ [Po (T) + Pi (T)]. 
        (1) 

The equation shown above defines the effective material property, which is 
represented by the variable P. This property can be Young's modulus E, shear modulus 
G, or coefficient of thermal expansion α and conductivity K. The subscripts i and o 
represent the inner and outer surface constituents respectively. Additionally, Vc is the 
volume fraction of the ceramic phase, and there can be multiple variations of material 
distributions within the wall thickness. The small imperfection of the material is 
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presented by scalar coefficient ρ<<1. Poisson’s ratios ν is assumed constant. Imperfect 
porous FG material is shown in Fig. 1. 
 

 
 

Figure 1: Imperfect porous FG material. 
 

In order to predict the buckling behaviour of FG beams under thermal loads more 
accurately, material properties are considered temperature dependent. Nonlinear 
equation of material properties in function of temperature T(K) can be written as:  

 

P = P0 (P-1 T-1 + 1 + P1 T + P2 T2 + P3 T3),
       (2) 

where temperature coefficients P0, P-1, P1, P2 and P3 are unique for every material [15].  
 

The relationship between stress and strain can be expressed using the generalized 
form of Hooke's law, which states that: 

 

σz = E (n,T) ∙ [εz – α (n,T) ∙ ΔT], 
 τzs = G (n,T) ∙ γzs.

          (3) 
The stress components are denoted by σz and τzs, while the strain components are 
represented by εz, and γzs. The flange normal and transverse directions are indicated 
by n and s, respectively, while z is parallel to the beam axis. Additionally, ΔT refers 
to a temperature change.  
 

A uniform, linear, and nonlinear temperature distribution is applied across the wall 
thickness of the beam. In the case of absence of heat generation, steady-state one-
dimensional heat conduction equation can be written as [16]:  

 

d(K(n,T)dT/dn)/dn = 0,
           (4) 

and the temperature distribution across the wall thickness can be expressed as: 
T(n) = Ti(z)+ C(T) ∙ [To (z) − Ti (z)] / D(n,T),

           (5) 
where C and D can be found in Ref [2]. Assuming equal coefficients of thermal 
conductivity Ki = Ko, equation (5) can be used to derive an expression for linear 
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temperature distribution. However, to achieve uniform temperature distribution, it is 
necessary to assume uniform temperature of the beam, that is To= Ti.  
 

3  Results 
 

Consider a thin-walled FG Channel-section beam with the length l = 4 m, Fig. 2. The 
beam is subjected to uniform temperature distribution. Two cases of boundary 
conditions are analysed, clamped-clamped and simply supported, and three types of 
material distribution, C1, C2 and C3. The components of the FG material are Al2O3 

(Ec = 346 GPa, αc = 6.86∙10-6 1/℃) as ceramic, and SUS304 (Em = 207 GPa, αm = 
1.53∙10-5 1/℃) as metal. 
 

 
 

Figure 2: Channel-section beam. 
 

FG material distribution C1 is composed of ceramic-rich bottom skin and FG skin 
at the top in the ratio 1:2. The volume fraction of the ceramic Vc can be given by:  

 

Vc = 1, t0 ≤ n ≤ t1, 
Vc = [(n - t3)/(t1 - t3)]p, t1 ≤ n ≤ t3.

       (6) 
Distribution C2 is made of ceramic core and FG skins in the ratio 1:1:1. The top skin 
varies from a ceramic-rich to a metal-rich surface, while the bottom skin varies from 
a ceramic-rich to metal-rich. Vc can be determined as follows: 

 

Vc = [(n - t0)/(t1 - t0)]p, t0 ≤ n ≤ t1, 
Vc = 1, t1 ≤ n ≤ t2, 

Vc = [(n - t3)/(t2 - t3)]p, t2 ≤ n ≤ t3.
        (7) 

Material distribution C3 is composed of FG core and ceramic-rich bottom skin and 
metal-rich top skin in the ratio 1:2:1. In this case, Vc can be expressed as: 

 

Vc = 1, t0 ≤ n ≤ t1, 
Vc = [(n – t1)/(t2 – t1)]p, t1 ≤ n ≤ t2, 
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Vc = 0, t2 ≤ n ≤ t3.
        (8) 

The analysis of the thermal buckling of a beam was carried out for various values 
of the power-law index p. The results of the author's beam model were verified using 
a numerical model based on shell finite elements. The FG material was simulated by 
homogeneous layers.  

 

 
 

Figure 3: Critical buckling temperatures for different material distributions and  
ρ = 0.2. 

 

 
 

Figure 4: Critical buckling temperatures of C2 for different porosity coefficient ρ. 
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Fig. 3 illustrates a comparison of the critical buckling temperatures with different 
power-law values p and FG material distribution for porosity coefficient ρ = 0.2. The 
C3 distribution showed the lowest temperatures due to the higher proportion of metal 
in the cross-section. In Fig. 4, a comparison of buckling temperatures of the C2 for 
different porosity coefficients is shown. The results indicate that as the porosity 
coefficient increases, the critical buckling temperature also increases. This is because 
an imperfect beam is less thermally conductive than a perfect one. 

 

A non-linear buckling analysis for porous materials was also performed and a 
comparison with temperature-dependent material properties was given. Below are the 
results for the two-sided clamped beam of C2 and C3 distributions for the exponent p 
= 0.2 and the porosity coefficient ρ = 0.1. It is also show comparison between 
temperature independent (TID) and temperature dependent (TD) material properties. 
The diagram shows a good agreement between the nonlinear response curves and the 
eigenvalues calculated using shell model. As expected, TD materials reach lower 
buckling temperature. 

 

 
 

Figure 5: Critical buckling temperatures of C2 for different porosity coefficient ρ. 
 

4  Conclusions and Contributions 
 

A numerical model has been developed to analyse the thermal buckling of a thin-
walled FG porous beam. The model uses finite element incremental equilibrium 
equations that have been developed using UL formulation and non-linear 
displacement cross-section field accounting for large rotation effects. The model 
examines the effect of power-law index, porosity coefficient, and skin-core-skin 
thickness ratios on the critical buckling temperature and post-buckling responses for 
various boundary conditions. The efficiency of the proposed model has been verified 
by shell mode. 
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The critical buckling temperature decreases with an increase in the power-law 
index p due to a higher proportion of metal in the cross-section. On the other hand, 
the critical buckling temperature increases with the increase of the porosity coefficient 
ρ because an imperfect beam is less thermally conductive than a perfect one. This 
relationship applies to all boundaries considered. As expected, the beam with 
temperature-dependent material properties shows lower thermal buckling resistance. 
 

The proposed algorithm is more efficient and faster than numerical models that 
rely on shell and solid finite elements, giving it an advantage. This model can be used 
to design and analyse beam structures made of composite FG materials, particularly 
in assessing the response and loss of structural load-bearing stability in a thermal 
environment. In future work, the model will be expanded to include shear 
deformations and material plasticity. Additionally, the aim is to extend the current 
model to other types of composite materials, such as laminates and graphite 
nanotubes. 
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