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Abstract

In this contribution the design of reticulated domes is dealt with, exploring the opti-
mal solutions that can be retrieved by a form-finding approach. To this goal a numer-
ical tool is implemented to address the design of reticulated shells through funicular
analysis. The force density method is implemented to cope with the equilibrium of
reticulated shells whose branches are required to behave as bars. Optimal networks
are sought by coupling the force density method with techniques of sequential convex
programming that were originally conceived to handle formulations of size optimiza-
tion for elastic structures. The Maxwell number, which is the sum of the force-times-
length products for all the branches in the spatial network, is used as objective function
to be minimized, whereas constraints on the length of the branches are enforced. Fu-
nicular networks that are fully feasible with respect to the set of local enforcements
are retrieved in a limited number of iterations, with no need to initialize the procedure
with a feasible starting guess. Optimal solutions are explored, considering different
types of grids, i.e. different types of lattices, while considering self-weight.
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1 Introduction

Lattice shells have double curvature, while consisting of branches that mainly undergo
axial forces [1, 2]. Optimal shapes for such kind of structures can be conveniently
investigated by means or equilibrium-based methods, e.g. funicular analysis, see e.g.
[3, 4, 5]. Reticulated shells can be modelled as statically indeterminate networks
of vertices and edges of prescribed topology. Boundary supports are given at the
restrained nodes of the network; unrestrained ones are in equilibrium with the applied
point loads. Introducing the force densities, i.e. the ratio of force to length in each
branch of the network [6], the equations governing the equilibrium of the unrestrained
nodes become linear and uncoupled in the three spatial directions.

In this contribution a generalization of the approach presented in [7] is explored, by
embedding the Force Density Method (FDM) within a multi-constrained minimization
problem. Due to its peculiar form, this problem can be efficiently solved through tech-
niques of sequential convex programming [8] that were originally conceived to handle
large-scale multi-constrained formulations of size optimization for elastic structures,
see [9] among the others.

The research of the optimal shape of reticulated shells is made by adopting an
alternative objective function, i.e. the Maxwell number, which is the sum of the force-
times-length products for all the edges of the spatial network. According to Maxwell’s
theorem [10], this quantity is the same as the sum of the load-times-distance products
for all the forces acting upon the network (the distance is from an arbitrary origin to
the point of application of the load), see also discussions and examples in [11, 12].
Constraints are of geometric type, being related to the minimum and maximum length
of the members and to the allowed range for the height of the nodes of the spatial
network.

In the next sections, a brief overview of the force density method (FDM) is given,
and the multi-constrained problem is presented. A numerical example is shown to
demonstrate the method and draw some preliminary conclusions.

2 Force density method

The “force density method” [6] is used to handle the equilibrium of spatial networks.
A funicular network consists of ns = n + nf nodes and m branches, which play as
bars. The axes of the Cartesian reference system with origin O are labelled as x, y, and
z. Hence, xs, ys, zs are vectors gathering the coordinates of the ns nodes: x, y, z refer
to the n unrestrained nodes, i.e. the nodes subject to external forces; xf , yf , zf collect
the nf restrained nodes, i.e. those where reactions arise. The connectivity matrix that
fully describes the shape of the grid is Cs, having subset C for the unrestrained nodes
and Cf for the restrained ones. The vectors that collect the coordinate difference of
the nodes along the axis x, y, z are denoted by u, v, w, respectively:

u = Csxs, v = Csys, w = Cszs. (1)
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The force densities, i.e. the ratios force to length for each branch of the network, are
stored in q = L−1s, being s the vector that collects the forces in the m branches.
The length of the branches li =

√
u2
i + v2i + w2

i is gathered in the square matrix
L = diag(l). Only gravity loads are considered in this study, especially self-weight.
Vertical point forces are prescribed at the unrestrained nodes through vector pz. Due
to the introduction of the vector q, the equilibrium of the unrestrained nodes is given
by a set of linear equations that are uncoupled in the three axes, i.e.:

CTQCx+CTQCfxf = 0,

CTQCy +CTQCfyf = 0,

CTQCz+CTQCfzf = pz,

(2)

being Q = diag(q).

3 Optimization problem

A multi-constrained minimization is stated in terms of any set of force densities q:

min
qi≤0

f

s.t. CT
xQCxx+CT

xQCfxxf = 0,

CT
yQCyy +CT

yQCfyyf = 0,

CT
z QCzz+CT

z QCfzzf = pz,(
li

lmin

)2

≥ 1 for i = 1...m,(
li

lmax

)2

≤ 1 for i = 1...m,

zj(q) ≥ zmin
j for j = 1...n,

zj(q) ≤ zmax
j for j = 1...n,

(3a)

(3b)

(3c)

(3d)

(3e)
(3f)

In the above statement, the objective function accounts for the sum of the force-
times-length products computed in each branch of the network [10]. Since anti-
funicular networks are dealt with, see side constraints in Eqns. (3), one has:

f = −sT l = −qTLl. (4)

The system of Eqn. (3b) states the equilibrium of the unrestrained nodes in the
three spatial directions, to compute z from q.

Eqns. (3c) and (3d) are used to prescribe the minimum (lmax) and maximum (lmax)
value of the length of each branch of the network. The coordinate difference of the
connected points given in Eqn. (1) are used to enforce these geometric constraints in
a straightforward way.
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Eqns. (3e–3f) are two sets of inequalities that prescribe lower and upper limits for
the nodal coordinates z. The design domain is such that each one of the n coordinates
zj must be bounded from below by zmin

j and from above by zmax
j .

The multi-constrained minimization problem is solved by means of the Method of
Moving Asymptotes [10], see the discussion in Section 1. Being MMA a first order
approach, the sensitivity of the objective function and constraints with respect to the
minimization variables in q is needed, see e.g. in [7].

4 Numerical example

The procedure sketched above is applied to the optimal design of lattice domes, see
e.g. [13].

The topology of a so-called Schwedler dome, see e.g. [14], is adopted to test the
algorithm. Such a structural topology includes intersecting ribs, rings, and diagonal
elements, see Figure 1(a). The dome has a radius equal to r = 6m. The design
domain is such that the lower and the upper bound of the vertical coordinates read
zmin = 3.00m and zmax = 8.00m, respectively. It is considered that the minimum and
the maximum length allowed to the members are lmin = 0.75m and lmax = 2.00m,
respectively.

The goal is to investigate the shape of the dome, finding the layout that minimizes
the Maxwell number in Eqn. (4), such that constraints on the length of the bars and on
the location of the vertical coordinates of the nodes are met. Self-weight is addressed,
considering a cross-section with area equal to 0.3×0.3m2 and a weight per unit length
that is 25 kN/m3.

It must be remarked that the system in Eqn. (2) remains linear if the load vector
is design-independent. Hence, an iterative procedure is implemented, by updating the
load vector after each optimization run. Figure 1 refers to the initial step, whereas
Figure 2 is related to the last one. The latter, herein the 5-th one, is characterized by a
relative variation in the objective function (with respect to the previous iteration) that
is less than 0.01.

Concerning the first analysis, Figure 1(a) reports the nodal loads, whereas Figure
1(b) represents the initial guess, i.e. the layout found enforcing the same force density
(25 kN/m) for all the branches. As one may see, geometric requirement are not met,
whereas a network that is quite different with respect to the initial scheme arises. All
the members are active (having non-zero force densities). Figure 1(c) presents the
optimal solution, that is fully feasible with local constraints and is a major variation
with respect to the layout of the initial guess. Indeed, only the original intersecting
ribs and diagonal elements remain, whereas rings are inactive (see the force intensity
map represented in the relevant picture). Reference is made to [15] for an insight of
the structural rigidity of such kind of pin-jointed space trusses with cyclic symmetry.

The result found in final step is that of Figure 2(b), which is a further modification
of the initial result.
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Figure 1: Initial run. Topology of the grid and nodal loads in kN (a), starting guess
(b), optimal network and element forces, in kN (c). Objective function at
convergence 6643 kNm.
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(a)

(b)

Figure 2: Final run. Topology of the grid and nodal loads in kN (a), optimal network
and element forces, in kN (b). Objective function at convergence 7576 kNm.
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5 Concluding remarks

In this contribution, a numerical tool has been implemented to address the design of
reticulated domes through funicular analysis. As investigated in the recent literature,
the force density method can be conveniently implemented to cope with the equi-
librium of spatial networks of trusses, especially when coupling the form-finding tool
with optimization routines. The Maxwell number, which is the sum of the force-times-
length products for all the branches in the spatial network, has been used as objective
function. Constraints have been enforced on the coordinates of the nodes, to prescribe
a feasible design domain, and on the geometry of the members, to control their mini-
mum and maximum length. The arising multi-constrained problem has been handled
by techniques of sequential convex programming, exploiting the particular form of the
equations that recalls that originally found in problems of size optimization.

A numerical example has been shown retrieving networks for dome-like reticulated
shells that are fully feasible with respect to the enforced local constraints. In partic-
ular, an iterative procedure has been implemented to cope with self-weight without
affecting linearity of the equations of the force density method.

The ongoing research is focused on testing the proposed procedure for different
initial geometries, inspired by [14], in order to discuss optimal solutions (in terms of
optimality with respect to the adopted measure, i.e. the Maxwell number). Further
research includes an extension of the procedure to account for probabilistic loading,
see [16].

Acknowledgements

The present study was supported by the NKFI (grant K 138615) and by the Ital-
ian Ministry of University and Research (grant PRIN 2022P7FLNC for the research
project LATTICE - Lattice meso-elements for a new class of green steel structures).

References
[1] Rozvany GIN, Prager W. A new class of structural optimization problems: Op-

timal archgrids. Comput Methods Appl Mech Eng. 1979;19(1):127-50.

[2] Dzierzanowski G, Czubacki R. Optimal archgrids spanning rectangular domains.
Comput Struct. 2021;242.

[3] O’Dwyer D. Funicular analysis of masonry vaults. Comput Struct. 1999;73(1-
5):187-97.

[4] Adriaenssens S, Block P, Veenendaal D, Williams C. Shell structures for archi-
tecture: Form finding and optimization. Routledge; 2014.

7



[5] Block P, Ochsendorf J. Thrust network analysis: A new methodology for three-
dimensional equilibrium. J Int Assoc Shell Spat Struct. 2007;48(155):167-73.

[6] Schek H. The force density method for form finding and computation of general
networks. Comput Methods Appl Mech Eng. 1974;3(1):115-34.

[7] Bruggi M. A constrained force density method for the funicular analysis and
design of arches, domes and vaults. Int J Solids Struct. 2020;193-194:251-69.

[8] Svanberg K. The method of moving asymptotes—a new method for structural
optimization. Int J Numer Methods Eng. 1987;24(2):359-73.

[9] Christensen PW, Klarbring A. An introduction to structural optimization. vol.
153 of Solid Mechanics and its Applications. Dordrecht, Netherlands: Springer;
2008.

[10] Maxwell JC. The Scientific Papers of James Clerk Maxwell. vol. 2 of Cam-
bridge Library Collection - Physical Sciences. Niven WDE, editor. Cambridge
University Press; 2011.

[11] Liew A, Avelino R, Moosavi V, Van Mele T, Block P. Optimising the load path of
compression-only thrust networks through independent sets. Struct Multidiscip
Opt. 2019;60(1):231-44.

[12] Jiang Y, Zegard T, Baker WF, Paulino GH. Form-finding of grid-shells using
the ground structure and potential energy methods: a comparative study and
assessment. Struct Multidiscip Opt. 2018;57(3).

[13] Tarnai T. Simultaneous static and kinematic indeterminacy of space trusses with
cyclic symmetry. Int J Solids Struct. 1980;16(4):347–359.

[14] Nooshin H. Space structures and configuration processing. Prog Struct Eng Mat.
1998;1(3):329–336.

[15] Tarnai T. Geodesic domes: Natural and man-made. Int J Space Struct.
1996;11(1–2):13–25.
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