
 

1 

 

Abstract 
 

Topology optimization in energy-absorbing structures, particularly in the context of 

elasto-plastic truss elements, presents a crucial avenue for engineering innovation. 

This paper extends from a one-dimensional toy model to a two-dimensional perfect 

elasto-plastic truss structure based on evolutionary structural optimization, examining 

diverse design variables, optimization strategies, structural sizes, and responses to 

energy absorption thresholds. This study reveals the superiority of certain design 

variables and optimization strategies, while highlighting challenges such as size 

dependency and mesh sensitivity. Furthermore, we unveil the nuanced impact of 

different energy distribution strategies on final topology structures. This work not 

only enriches our understanding of topology optimization for energy absorption but 

also inspired for future research and refinement in this domain. 
 

Keywords: topology optimization, energy absorption, elasto-plasticity, truss, strain 

energy, evolutionary structural optimization 
 

1  Introduction 
 

Energy absorption stands as a pivotal application domain for functionally graded 

metamaterials, where the paramount objective revolves around crafting structures that 

are not only lightweight but also proficient in meeting stringent energy absorption 

requisites, which is the primary objective in engineers' topology optimization designs 

[1]. Given that a significant portion of energy absorption occurs in plasticity, it 

becomes imperative to pivot towards employing elastoplastic constitutive models 
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rather than adhering solely to linear elastic models. This strategic shift is pivotal in 

the design of structures engineered for energy absorption. 
 

Against this backdrop, our paper aims to extend from a one-dimensional (1D) toy 

model to a two-dimensional (2D) truss structure. We dissect various facets including 

different design variables, optimization strategies, structural sizes, responses to 

energy absorption thresholds, and the ramifications of employing diverse energy 

distribution strategies on the ultimate topology structure. By traversing this 

multifaceted terrain, we aim to illuminate the nuanced interplay between these 

variables and strategies, thereby enriching our understanding of the topology 

optimization landscape in the context of energy-absorbing structures. 
 

Here we demonstrate our idea as a 1D toy example. As shown in Fig.1, 𝑛 numbers of 

perfect elastoplastic 1D bar elements are equally spaced with distance 𝑑. One node of 

the bars is fixed to the ground and another node connects to a rigid body. The angle 

between the rigid body and the horizontal ground is 𝜃. The rigid body was applied a 

uniform downward force, and the plastic energy absorption of the bar system should 

absorb a certain amount of work 𝑈∗ . Neglect the Poisson’s effect and energy 

dissipation. 

 
Figure 1. Scheme of 1D toy example. 

 

With the given distance 𝑑 , inclined angle 𝜃 , initial length of the bar 𝐿0 , elastic 

modulus 𝐸, strain of yield point 𝜀𝑦 , strain of fracture point 𝜀𝑢 , energy absorption 

threshold 𝑈∗, we want to minimize the total length of bars subjected to the following 

constrains: no bar reaching fracture point; at least one bar is not yielded; the total (or 

plastic) strain energy of the bar system is over than the energy absorption threshold. 

The 1D toy example shows the main idea of the plastic strain energy constrained 

algorithm. In the following of the paper, we will discuss 2D truss structure. 
 

2  Optimization formulation 
 

2.1 Optimization Problem Statement 

In 2D truss structure, the optimization problem can be described as: 
 

                                           𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ 𝑊(𝑥i)
𝑁

𝑖=1
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                                           𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑈∗ − ∑ (𝑈𝑒,𝑖 + 𝑈𝑝,𝑖)
𝑁

𝑖=1
≤ 0  

                                                                  𝑥min ≤ 𝑥i ≤ 1 

                                                                  ∀𝜀𝑖 < 𝜀𝑢 

                                                                  ∃𝜀𝑖 < 𝜀𝑦 
 

Where 𝑊(𝑥i) is the weight function of the design variables 𝑥i for 𝑖th truss members, 

two different design variables the cross-section area 𝐴  and elastic modulus 𝐸  are 

discussed. Besides, 𝑈∗  is the threshold of energy absorption, 𝑈𝑒,𝑖  and 𝑈𝑝,𝑖  are the 

elastic and plastic strain energy of the truss members, 𝑁 is the total number of the 

truss members, 𝑥min is a small value representing the void element, 𝜀𝑢 is the strain in 

fracture point, 𝜀𝑦 is the strain in yield point. 
 

2.2 Geometrical property and constitutive model of truss element 

The 2D truss structure is assembled by a certain amount of truss element. Each truss 

element contains four nodes and each pair of nodes in the element are connected by 

perfect elastoplastic truss member. To simply the problem we consider the mechanical 

behaviour of truss members as bars, as well as neglect the Poisson’s effect, energy 

dissipation and geometrical nonlinearity. The geometry and constitutive model of the 

truss are shown in Fig.2(a) and (b) respectively. 𝐸 = 1𝑒8, 𝜀𝑦 = 0.2%, 𝜀𝑢 = 2%. 
 

 
Figure 2: (a) Geometry of a 4-nodes truss element; (b) perfect elastoplastic model of 

truss member. 
 

2.3 Virtual stiffness method of finite element analysis 

To solve the nonlinear problem, the penalty method is used to enforce the increment 

of Dirichlet boundary conditions transform to approximate Neumann boundary 

conditions [2]. In this method, a virtual spring with very high stiffness is parallelly 

connected to the nodes where the Dirichlet boundary conditions are prescribed. When 

the stiffness of the virtual spring much larger than the stiffness of the truss: 

𝐾𝑠𝑝𝑟𝑖𝑛𝑔 ≫ 𝐾𝑡𝑟𝑢𝑠𝑠 

the original Dirichlet boundary condition 𝑢  can be replaced by an approximate 

Neumann boundary condition: 

𝐹 = (𝐾𝑠𝑝𝑟𝑖𝑛𝑔 + 𝐾𝑡𝑟𝑢𝑠𝑠)  ⋅ 𝑢 ≈ 𝐾𝑠𝑝𝑟𝑖𝑛𝑔 ⋅ 𝑢 
 

2.4 Load cases and thickness visualization 
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Here we introduce two types of load cases: cantilever and “Half-MBB”. Fig.3 shows 

the scheme of the load cases. 

 
Figure 3: Two load cases. (a). cantilever truss and (b). “Half-MBB” truss. 

 

The thickness of the line represents the percentages remain of design variables. The 

thicker the line means the truss member is more closing to the initial value, and thus 

equivalent heavier member. Although the relationship between the elastic modulus 

and density is not specified here, we can still clearly observe the material distribution 

from the thickness of the line. 

 

2.5 Optimization algorithm 

Evolutionary structural optimization (ESO), based on the philosophy of "survival of 

the fittest," achieves structural optimization by iteratively removing the elements 

contributing the least to the global structure [3]. In the following chapter, we discussed 

two distinct optimization strategies: one involves removing truss members with the 

lowest strain energy levels, enhancing the overall structural efficiency in absorbing 

energy; the other entails removing truss members with the highest strain energy levels 

and its surrounding members will absorb energy, thereby delay the reaching of 

fracture to enables the algorithm to remove material to the greatest extent possible 

through as many iterations as possible. To circumvent potential difficulties arising 

from complete material removal, we employ the soft-kill [4] to eliminate material, 

wherein a minimum allowable value 𝑥min is set for the optimization variable as a 

"void" member. 
 

3  Results and discussion 
 

3.1 Design variables 

In this part we compared the optimized topology of two different design variables, the 

cross-section area 𝐴 vs. elastic modulus 𝐸 of truss members under cantilever load case, 

as shown in Fig.4. The results of 𝐸 as variable have more redundant structure, which 

are void member in the results of 𝐴  as variable. This shows under same energy 

threshold the 𝐸  as design variable tend to generate the uniformed distribution of 

material in the design domain, which also proved according to Fig.5. The uniformed 

distribution also results in a less pronounced final topology. This may contradict our 

impression of the topology optimization results. Whereas when using 𝐴 as design 
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variable, the optimization algorithm tends to concentrate the material on key members 

to form a clear force transmission path. These key members bear most of the strain 

energy, while the strain energy of other members is relatively small.  
 

Recall that the relation between the elastic modulus and density is not specified, so 

the final weight of results for 𝐸 as variable does not mean it will be heavier than the 

results of 𝐴 as variable, the thickness only present the percentages remain of design 

variable. However, since the non-intuitive of topology and the relation of 𝐸  and 

weight, variable elastic modulus will make actual manufacturing more complicated, 

we should carefully choose 𝐸 as a design variable. 
 

 
Figure 4: Comparison of design variables of cantilevers: cross-section area 𝐴 vs. 

elastic modulus 𝐸 of truss members. (a). 𝐴 as variable, 2*2 elements; (b). 𝐸 as 

variable, 2*2 elements; (c). 𝐴 as variable, 6*6 elements; (d). 𝐸 as variable, 6*6 

elements. 
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Figure 5: Larger size comparison of design variables of cantilevers: cross-section 

area 𝐴 vs. elastic modulus 𝐸 of truss members. (a). 𝐴 as variable, 20*10 elements; 

(b). 𝐸 as variable, 20*10 elements. 
 

3.2 Optimization strategies 

From the above analysis we inspired by the idea of the uniformed distribution of 

material. The original strategy of ESO algorithm is removing the material of truss 

members with the lowest strain energy levels (so-called “min” strategy). Since the 

truss members with concentrated strain energy will finally reaching the fracture point 

and terminate the optimization algorithm, we reversed the strategy for delaying the 

reaching of fracture. We remove the truss members with the highest strain energy 

levels so that its surrounding members will absorb energy (so called “max” strategy). 

The results of these two strategies are shown in Fig.6. Compared with the min strategy, 

the results of max strategy are still retained a lot of useless materials in the final 

topology, and even almost the same as the initial design. Obviously, the optimization 

results using the max strategy are not satisfactory. We believe that when an efficient 

member is removed, the inefficient members around it cannot generate new efficient 

force transmission paths, finally leads insufficient optimization. We only use min 

strategy in the following research. 
 

 
Figure 6: Comparison of optimization strategies of cantilevers. Up row: remove 

lowest strain energy member (min strategy) vs. down row: remove highest strain 

energy member (max strategy). (a). 𝐴 as variable, 6*6 elements, min strategy; (b). 𝐴 
as variable, 2*2 elements, min strategy; (c). 𝐸 as variable, 6*6 elements, min 

strategy; (d). 𝐸 as variable, 2*2 elements, min strategy; (e). 𝐴 as variable, 6*6 

elements, max strategy; (f). 𝐴 as variable, 2*2 elements, max strategy; (g). 𝐸 as 

variable, 6*6 elements, max strategy; (h). 𝐸 as variable, 2*2 elements, max strategy. 
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3.3 Energy thresholds 

In this section, we demonstrate the topological configuration as the energy threshold 

increases in Fig.7. In the results of 𝐴 as variable, as the energy threshold increases, 

the amount of material remaining increases, and new force transmission paths appear 

to absorb energy. The case is different in the results of 𝐸  as variable. Due to the 

redundant material remains, the thicknesses of the lines have no significant changes, 

and the topology in general also have minus changes. It furtherly proved the 𝐸 as 

variable will cause inefficient optimization as discussed in chapter 3.1.  
 

 
Figure 7: Trends of increasing the energy thresholds of 6*6 elements cantilevers. 

(a)-(e): 𝐴 as variable, energy thresholds = 3000, 5000, 7000, 9000, 11000 

respectively; (f)-(j): 𝐸 as variable, energy thresholds = 3000, 5000, 7000, 9000, 

11000 respectively. 
 

3.4 Size effect 

In this section we want to understand the effect of the structure size (numbers of the 

truss elements) on the energy absorption. 𝑈𝑝  ratio shows how much plastic strain 

energy occupied in total strain energy. According to our constitutive model, the upper 

limit of the plastic strain energy that the same amount of material can absorb is 18 

times of its elastic strain energy. Hence, 𝑈𝑝 ratio can help to evaluate the absorbing 

efficiency of a structure. Higher 𝑈𝑝  ratio means more plastic strain, under same 

energy threshold the structure requires less amount of material.  
 

We firstly evaluate the size dependency, note that we kept the length as a constant of 

each element, more element equal to larger size of the global structure. Fig.8 listed 4 

different optimization results and its energy contributions. From Fig.8, when we 

expand the structure size from 2*2 to 6*6 elements, the energy contributions 

transformed from plastic strain dominated to elastic dominated. The larger cantilever 

is stiffer than the small one, the stress will be more dispersed, so that the global strain 
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is also much smaller than the small cantilever. Besides, the 𝑈𝑝 ratios of 𝐴 as variable 

are over than 𝐸, again proves the 𝐴 is more suitable for the design variable. 
 

We kept the design domain as constant to explore the mesh independency. The mesh 

independency is a necessary check in the algorithm of referenced volume element 

(RVE) of solid topology optimization, aiming to obtain the optimization results which 

independent of the mesh density in a certain size of design domain. Although truss 

elements are different from RVE, the increment of mesh density will introduce more 

materials, here we still verified the mesh independency to observe the effects, shown 

in Fig.9. The results showed that the increment of mesh density will greatly change 

the final topology, caused poor energy absorbing structure with low 𝑈𝑝 ratios. 
 

 
Figure 8: Structure size dependence of topology result under cantilever load case. 

(a). 𝐴 as variable, 2*2 elements; (b). 𝐴 as variable, 6*6 elements; (c). 𝐸 as variable, 

2*2 elements; (d). 𝐸 as variable, 6*6 elements. 

 

 
Figure 9: Mesh dependence of topology result under cantilever load case. (a). 𝐴 as 

variable, 2*2 elements; (b). 𝐴 as variable, 6*6 elements; (c). 𝐸 as variable, 2*2 

elements; (d). 𝐸 as variable, 6*6 elements. 
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3.5 Energy distribution strategies 

In this section we compared the difference between two energy distribution strategies: 

total strain energy as constrain and only plastic strain energy as constrain. The idea 

came from the huge ratio of the maximum plastic strain energy to the elastic strain 

energy that a material can absorb before fracture, as well as the poor 𝑈𝑝 ratios in larger 

size design. To set a fair threshold, we firstly run the total strain energy algorithm and 

recorded the value of absorbed plastic strain energy, the value will be the threshold of 

only plastic strain energy algorithm. The results in Fig.10 showed the significant 

difference of optimal topology. Instead of achieving a similar topological 

configuration, the algorithm of only plastic strain energy as constrain retained many 

inefficient truss members. 
 

The algorithm will apply load until the total plastic strain energy reaching threshold 

from the first iteration. At that time, the low efficient material has not yet been 

removed, but it might have significant strain especially the truss members closing to 

the boundary condition (stress concentration). Since the ESO algorithm will remove 

the truss member which has minimum level of strain energy, the plastic flow will 

“freeze” in the truss members which are yielded during the first iteration and lead a 

typical local optimum. The mathematical programming algorithm like method of 

moving asymptotes might avoid the trap. 
 

 
Figure 10: Comparison of different energy distribution strategies of “half-MBB” 

load case truss structure. (a). total strain energy as constrain; (b). plastic strain 

energy as constrain. 
 

4  Conclusions and Contributions 
 

In this paper, we delved into a comprehensive exploration of various facets within the 

realm of topology optimization for strain energy constrained 2D elasto-plastic energy 

absorbing trusses based on evolutionary structural optimization. Specifically, we 

scrutinized diverse design variables, optimization strategies, structural sizes, 

responses to energy absorption thresholds, and the influence of different energy 

distribution strategies on the final topology structure. 
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Our findings underscore several key insights. Firstly, we observed that the cross-

sectional area of truss members emerges as a more advantageous design variable 

compared to elastic modulus. Additionally, we determined that the optimization 

strategy of evolutionary structural optimization (ESO), focusing on removing 

materials with the lowest strain energy levels, surpasses the efficacy of delaying 

fracture strategies. However, it is noteworthy that our analysis revealed inherent 

dependencies on size and mesh within the algorithm, suggesting the necessity for 

further refinement and enhancement. Furthermore, we discovered that imposing a 

constraint on total strain energy yields superior outcomes compared to directly 

constraining plastic strain energy, as the latter tends to retain plastic flow in less 

efficient materials from the initial iterations. This underscores the potential for 

exploration with alternative topology optimization algorithms. 
 

Our study elucidates inherent challenges within the topology optimization of energy-

absorbing trusses, particularly regarding mesh dependency and the constraints 

associated with plastic strain energy. By shedding light on these issues, our work not 

only paves the way for future research but also offers a discerning comparison of the 

effects of design variables and optimization strategies. 
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