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Abstract 
 

In this paper, we present topology optimisation formulation considering material and 
geometrical nonlinearities based on the Updated Properties Model (UPM). We use the 
Saint Venant and neo-Hookean strain energy for physical nonlinearity and the Green-
Lagrange strain tensor for geometrical nonlinearity. The suggested method can be 
applied to the effective design of hyperelastic metamaterials, with the primary 
potential applications being in biomedical and soft robotic systems. 
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soft metamaterials 
 
 

1  Introduction 
 

Recent years have seen a significant increase in interest in the application of structural 
optimisation to mechanical parts [1,2]. There are three types of structural 
optimisation: size optimisation, shape optimisation and topology optimisation. 
Among them, topology optimisation is arguably the one that is utilised in academic 
and industrial settings the most. To now, various topology optimisation approaches 
have been introduced and programmed, for example, the Solid Isotropic Material with 
Penalisation (SIMP) method [3], the Level Set-based method [4], the Evolutionary 
Structural Optimisation (ESO) method [5] and the Bi-evolutionary Structural 
Optimisation (BESO) method [6]. 
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More recently, a new scheme for the optimisation of the topology has been 
introduced by Saucedo-Mora et al [7,8], who have named it the Updated Properties 
Model (UPM). Unlike the most common topology optimisation techniques like SIMP, 
the UPM directly tackles the mechanical properties instead of relying on heuristic 
filters to prevent numerical issues, density as an artificial intermediate variable, or 
volume constraints. The UPM was utilised and programmed for linear elastic 
materials with isotropic and orthotropic properties, in earlier research. 

 
In this work, we extend the UPM approach to hyperelastic materials, including 

material and geometrical nonlinearities not previously considered. For hyperelastic 
materials, we use the Neo-Hookean model (physical nonlinearity) in conjunction with 
Green-Lagrange strains as geometric nonlinearity (large amplitude deformation). 
 
 
 

 

2  Methods 
 
The procedure in the UPM method is the minimisation of the standard deviation of a 
pre-defined mechanical property that is chosen by the user, namely 
 

min 𝑠𝑯(𝑯)

𝑠𝑡 [𝑘]{𝑢} = {𝑓}
𝛼 ≤ 𝛼 ≤ 𝛼 ,   𝑗 = 1,2,3, … . 𝑁

                                                                     (1) 

 
 
in which 𝑠  stands for the standard deviation of 𝑯; [𝑘] is the stiffness matrix, {𝑢} is 
the nodal displacmenet vector, and {𝑓} is the nodal force vector; 𝛼  refers to the 
mechanical variable of each element that in total will be 𝑁 elements in the volume, 
and it is limited between a selected minimum and maximum variable. In Equation. 
(1), 𝑯 stands for the sensitivity of the strain energy with respect to the mechanical 
variable. For example in the linear elastic materials, it is given as 𝑯 =  𝜕𝑊 𝜕𝐸⁄  where 
𝑊 is the strain energy function.  
Using an iteration loop the optimised structure based in the UPM is obtained with the 
following update equation for the mechanical variable 
 

𝛼 = 𝛼 1 +  
∗

                                                                                          (2) 

 
where  𝐻 is the mean of vector 𝑯 and 𝐾  stands for a modulated parameter of the 
magnitude of the step performed.  
The formulation expressed above is the general trend in the UPM that can be 
implemented for linear and nonlinear elastic materials. The main difference between 
linear and nonlinear case is the shape of the strain energy function as well as the 
strains. In what follows we present the equations for both types of material. 
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2. 1 Linear elastic materials 
 
For the elastic materials the strain energy is expressed as  
 

𝑊 = ∫ 𝜀:
⬚

ℂ ∶ 𝜀 𝑑Ω                                                                                                     (3) 

 
where 𝜀 is the small strain and ℂ is the material stiffness tensor wherein the mechanical 
variables are present. For the linear elastic materials these mechanical variables can 
be Poisson's ratio or Young's modulus, which in the previously published papers latter 
has been selected as the mechanical variable. 
 
 
2.2 Nonlinear elastic material 
 
Here we show the equations for the nonlinear elastic materials. The first strain energy 
function is Sent Venant that is just an extension of the linear elastic materials, given 
as 
 

𝑊 = ∫ 𝜆(𝑡𝑟 𝑬) + 𝜇𝑬: 𝑬  𝑑Ω
⬚

                                                                                         (4) 

 
where 𝑬  is the Green-Lagrange strain tensor for considering the geometric 
nonlinearity, 𝜇 and 𝜆 are Lame’s constants that are formulated as 
 

𝜆 =
( )( )

𝜇 =
( )

                                                                                                           (5) 

 
where 𝐸 and 𝜈 are Young's modulus and Poisson's ratio respectively. For the Saint 
Venant the mechanical variables can be Young's modulus and Poisson's ratio. If the 
mechanical variable is Young's modulus, the parameter 𝑯 can be derived from 
Equation. (4) as follows 
 

𝐻 =  ∫ 𝑅 (𝑡𝑟 𝑬) + 𝑅  𝑬: 𝑬  𝑑Ω
⬚

                                                                           (6) 

 
in which 
𝑅 =

( )( )

𝑅 =
( )

                                                                                                          (7) 

 
Another model is the neo-Hookean that we formulate here. We consider a 
compressible neo-Hookean strain energy function, for example 
 

𝑊 =  ∫ 𝜇(𝐼 − 3) − 𝜇 ln 𝐽 + (ln 𝐽)  𝑑Ω      
⬚

                                                      (8) 
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where 𝜇 and 𝜆 stand for Lame’s constants given in Equation. (5), 𝐼  is the first 
invariant of the right Cauchy-Green deformation tensor and 𝐽 is the determinant of the 
deformation gradient tensor. For the neo-Hookean model we have also two 
mechanical variables the same as Saint Venant strain energy function. 
 

 
 
3  Algorithm and compute code for UPM 
 
 
Based on the above equations, UPM-based topology optimisation can be used for 
different materials ranging from linear to non-linear. Here in Table. 1 shows the 
general algorithm for the UPM, which can be programmed in a suitable programming 
language such as MATLAB and Julia. 
 
Table. 1 The UPM algorithm 
 
Input: Required initial conditions and parameters. 
do FEM analysis at iteration 𝑡 = 0 
Calculate → 𝐻,  𝐻, 𝑠  
Calculate → 𝑊 at itertaion 𝑡 = 0 
 

𝐴 =
𝑊 − 𝑊

𝑊
 

while (𝐴 > 𝜖 or 𝑡 ≤ 1) do 
        do FEM analysis at iteration 𝑡 + 1 
        Calculate → 𝐻,  𝐻, 𝑠  
        Calculate → 𝑊  

        Update 𝛼 = 𝛼 1 +  
∗

  

       if 𝑡 > 0 then  
             Calculate → 𝐴 
            if 𝐴 < 𝜖 then  
                 The design is optimum: 𝛼  for each element 
            else  
 
               𝑡 = 𝑡 + 1  
 
             end if 
       end if  
 
end while  
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4  Conclusions and Contributions 
 
 

In this work we developed equations for the UPM based topology optimisation for the 
materials with material and geometrical nonlinearities. In the previous works, the 
UPM was primarily developed for the linear elastic materials and here we show that 
it can be easily extended for the nonlinear materials. We formulated equations for Sain 
Venant and neo-Hookean strain energy function. However, it can be for other 
hyperelastic strain energy. This method is robust and can be implemented for 
nonlinear materials with different properties like anisotropy. 
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