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Abstract 
 

This paper proposes a topology optimization method under a multi-framework 

approach that allows for human intervention. The objective is to leverage the rich 

experience and expertise of designers to dynamically adjust and control the 

optimization process, thereby yielding faster and more practical design solutions. To 

achieve this aim, an interaction strategy is developed between the Solid Isotropic 

Material with Penalization (SIMP) method, which employs an implicit geometric 

description, and the Moving Morphable Components/Voids (MMC/MMV) approach, 

characterized by an explicit geometric representation. Proposed method incorporates 

structural components into the pixel-based SIMP method, enabling intuitive control 

over the topology and geometric parameters of a structure. Through direct 

manipulation of these structural components, designers can add or adjust critical 

components, remove or modify redundant components, improving structural 

performance. Human intervention facilitates a richer and more diverse range of design 

options to meet specific application scenarios and performance criteria. The 

interaction across multiple methods also allows the direct importation of SIMP-based 

optimization results into Computer-Aided Design (CAD) software, enhancing design 

flexibility and convenience. The effectiveness of the proposed method is validated 

through multiple standard examples. 
 

Keywords: solid isotropic material with penalization, moving morphable 

components/voids, multi-framework, human intervention, topology optimization, 

structural components. 
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1  Introduction 
 

Topology optimization has become an integral part of modern design 

methodologies. Its primary advantage lies in its ability to generate innovative and 

efficient design solutions that surpass traditional approaches in achieving lightweight 

structures without relying on manual experience. Currently, topology optimization has 

reached a high degree of automation, requiring only engineers to assess the quality of 

the final results. It has been extensively applied in the manufacturing of industrial 

equipment for the aerospace, automotive, and shipbuilding sectors. 
 

However, variations in operational conditions or adjustments made to simplify the 

manufacturing process can impact the optimized structure's physical performance [1]. 

To align more closely with real-world application scenarios, these issues can be 

addressed by increasing the complexity of the mechanical models or constraints, such 

as incorporating optimizations with stress constraints [2-6] and buckling constraints 

[7-10]. Enhancing design applicability with new variables increases optimization 

complexity, leading to longer computational times due to the iterative nature of 

topology optimization. Often, complex design problems are not directly solvable, 

requiring designers to make extensive adjustments, turning topology optimization into 

a trial-and-error process. This contradicts its intended use in structural design, 

presenting a challenge to balance usability and innovation while efficiently 

incorporating design requirements into topology optimization. 
 

Some studies have proposed human-machine interactive frameworks that merge 

the exploratory capabilities of fully automated topology optimization with the 

professional knowledge of human design engineers. The objective is to expand the 

application of topology optimization to industrial applications currently deemed too 

time-consuming and computationally demanding. This new framework is 

characterized by the dual incorporation of automated machine discovery and rich 

human experience, synergizing to elevate satisfaction with the design quality [11]. In 

addition, researchers have explored applying evolutionary methods to truss design and 

continuous topology optimization, as evidenced by the studies of Mueller and 

Ochsendorf [12] and Yang et al. [13]. These methods produce several design solutions 

with similar performance levels, allowing designers to select the one that matches 

their aesthetic preferences. The human-informed topology optimization (HiTOP) 

algorithm proposed by Ha and Carstensen [14] utilizes an interactive scheme. In this 

approach, design decisions are co-guided by human and machine efforts. An initial 

exploratory design iteration is conducted using a standard topology optimization 

process. After a number of initial iterations, the program is paused for the design 

engineer to intervene. They use an elliptical shape to define regions of interest (ROI) 

and implement minimal characteristic dimension control in those local areas to 

improve structural performance. 
 

The SIMP (Solid Isotropic Material with Penalization) method in structural 

optimization has gained popularity for its applicability and flexibility but faces 

challenges in incorporating human intervention during topology optimization. The 
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method produces results as a density distribution, which lacks clear interpretability 

and does not straightforwardly present structural features like sizes and void patterns. 

This complicates intuitive understanding and direct manipulation of the design, 

requiring post-processing for clearer geometric features, thus increasing design 

complexity and limiting the SIMP method's intervenability. 
 

This study proposes an interactive framework for structural optimization. This 

method facilitates human-intervened design for the SIMP approach, allowing real-

time modifications to the current structure to speed up convergence or meet design 

requirements. The crux of the current method lies in achieving a phased strategy for 

mutual conversion between the SIMP approach and explicit topology optimization 

methods, such as Moving Morphable Components/Voids (MMC/MMV) [18-21], 

transforming pixel-based optimization results into more intuitive, maneuverable 

structural element descriptions. Within this framework, engineers can directly control 

sizes, thicknesses, and the addition or removal of components, leading to more 

flexible and convenient design adjustments and enhancing the usability of the final 

design. Geometric transformations from pixel to precise parameters enhance 

mechanical control, improving structural stability. Human-centered design methods 

increase manufacturability and design flexibility. By integrating SIMP with CAD, the 

approach streamlines digital processes, reducing the need for post-processing. 
  

The arrangement of this paper is as follows. Section 2 and 3 provides a detailed 

introduction to the Solid Isotropic Material with Penalization (SIMP) topology 

optimization method and its explicit conversion mechanism to results based on 

Moving Morphable Components (MMC). Section 4 focuses on showcasing a series 

of interactive optimization examples. These examples demonstrate the application of 

the proposed method and verify its practical effectiveness through specific case 

studies. Finally, Section 5 concludes the paper, summarizing the research findings, 

discussing the significance and limitations of the study, as well as future research 

directions.  
 

2  Methods 
 

2.1  The SIMP Topology Optimization Framework 
 

 
Figure 1: Classical SIMP Method Example with MBB Beam 

 

In classical topology optimization problems, the minimization of compliance 

primarily focuses on optimizing the distribution of material to obtain a structure with 

maximum stiffness under given load conditions and volume constraints. As illustrated 

in Figure 1, to accurately evaluate structural performance, the design domain is 



4 

 

divided into several elements. Within the SIMP framework, the state of 𝑒-th element, 

is defined by its density 𝜌𝑒 , where 𝜌𝑒 = 1 represents a solid element, and 𝜌𝑒 = 0 

indicates the absence of material. The specific optimization formulation can be 

expressed as follows: 
 

𝐹𝑖𝑛𝑑   𝝆⊤

𝑀𝑖𝑛   𝒇𝑇𝒖

𝑆. 𝑡.   (∑𝑥𝑒
𝑝𝑲𝑒

𝑁

𝑒=1

)𝒖 = 𝒇, (1)

∑𝑣𝑒𝜌𝑒 ≤ 𝑉

𝑁

𝑒=1

,

0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1, 𝑒 = 1, … , 𝑁

 

 

The essence of the optimization problem lies in minimizing the objective function 

𝐶 = 𝒇𝑇𝒖, where the global stiffness matrix 𝑲 and the global displacement vector 𝑼 

satisfy the static equilibrium equation 𝑲𝒖 = 𝒇, with 𝒇 representing the global load 

vector applied to the structure. Moreover, a volume constraint is introduced to limit 

the use of material, where 𝑉 denotes the upper limit of the volume fraction, and 𝑣𝑒 

represents the volume of each element. 𝑝 is the penalization factor, and 𝜌𝑚𝑖𝑛 refers to 

a minimum density limit. 
 

Despite the widespread attention the SIMP method has garnered among 

researchers, the challenges it faces in facilitating human intervention cannot be 

overlooked. Given that the optimization results produced by the SIMP method are 

predominantly presented in the form of density distributions, lacking intuitive 

geometric features, designers find it difficult to make direct, targeted modifications to 

structural features. 
 

2.2  The MMC Topology Optimization Framework 
 

 In contrast to the SIMP method, the MMC approach utilizes components as the 

fundamental elements to describe the structure's topology, with the corresponding 

geometric parameters of these components serving as the design variables for 

optimization. This component-based approach to structural topology description 

provides more intuitive geometric information for human intervention, allowing 

designers to modify the topology layout using components as the basic operational 

entities. Figure 2 illustrates the fundamental concept of this method. Under the MMC 

framework, the topology of a structure can be expressed as follows: 
 

{

𝜙𝑎(𝒙) > 0, 𝑖𝑓 𝒙 ∈ 𝛺𝑎

𝜙𝑎(𝒙) = 0, 𝑖𝑓 𝒙 ∈ 𝜕𝛺𝑎

𝜙𝑎(𝒙) < 0, 𝑖𝑓 𝒙 ∈ 𝐷\𝛺𝑎\𝜕𝛺𝑎
(2) 

 

In this framework, 𝑫 represents the design domain, while 𝛺𝑎 denotes the region 

occupied by all solid components. 𝜙𝑎 represents the topology description function, 
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with 𝜙𝑎 = max(𝜙1, 𝜙2, … , 𝜙𝑖) , where 𝜙𝑖  is the Topology Description Function 

(TDF) of the 𝑖-th component. 
 

 
Figure 2: Component with Quadratically Variable Thickness 

 

This study adopts quadratic thickness components, as shown in Figure 2, with the 

TDF defined as follows: 
 

𝜙𝑖(𝑥, 𝑦) = (
𝑥′

𝐿𝑖
)

𝑐

+ (
𝑦′

𝑓(𝑥′)
)

𝑐

− 1 (3) 

{
𝑥′

𝑦′
} = [

𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖
−𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖

] {
𝑥 − 𝑥0𝑖
𝑦 − 𝑦0𝑖

} (4) 

 

In the TDF function, 𝑐 is a large even number, typically chosen as 6, with larger 

values resulting in sharper corners at the component junctions. 𝑥0𝑖 and 𝑦0𝑖 represent 

the center coordinates of the component, while 𝐿𝑖 represents half the length of the 

component. 𝜃𝑖  denotes the angle from the horizontal direction to the component's 

centerline (measured counterclockwise). For quadratic thickness components, 𝑓(𝑥′) 
is expressed as: 

 

𝑓 (𝑥′) =
ℎ1 + ℎ2 − 2ℎ3

2(𝐿)2
(𝑥′)2 +

ℎ2 − ℎ1
2𝐿

𝑥′ + ℎ3 (5) 

 

For numerical processing, a regularized version of the Heaviside function is 

typically used in place of the traditional Heaviside function [22], converting TDF 

values into density values between 0 and 1. In this study, 𝐻𝜖(𝑥) is employed as the 

regularized form of the Heaviside function: 
 

𝐻𝜖(𝑥) =

{
 

 
1,                       𝑖𝑓 𝑥 > 𝜖

3(1 − 𝛼)

4
(
𝑥

𝜖
−
𝑥3

3𝜖3
) +

1 + 𝛼

2
, 𝑖𝑓 − 𝜖 ≤ 𝑥 ≤ 𝜖

𝛼,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6) 

 

Like many other topology optimization methods, the MMC approach utilizes four-

node bilinear elements to discretize the design domain uniformly. The density of an 

element can be determined through interpolation methods: 
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𝜌𝑒 =
∑ (𝐻𝜖(𝜙𝑖

𝑒))
𝑞4

𝑖=1

4
(7) 

 

Here, 𝐻 = 𝐻𝜖(𝑥) represents the Heaviside function, and 𝜙𝑖
𝑒(𝑖 = 1,… ,4) are the TDF 

values at the four nodes of 𝑒 -th element. 𝜖  is the parameter controlling the 

regularization magnitude, and 𝛼 is a small positive number used to ensure the non-

singularity of the stiffness matrix in calculations. 𝑞  acts as a density penalization 

factor, similar to the one used in the SIMP method. 
 

3  Numerical Implementation of Human-Intervened Topology 

Optimization 
 

3.1  Interaction Conversion Strategy Between Explicit/Implicit Topology 

Optimization Models 
 

This paper proposes a phased strategy for the automatic identification of structural 

members from implicit topology optimization results. This method retains the 

structural features found in SIMP optimization results, ensuring a natural transition 

between structural elements. Thus, when designers intervene in the subsequent 

optimization process, they can adjust structural features more accurately. To achieve 

this, we utilize the concept of components from MMC, defining structural members 

as composed of components (including intersections of multiple components). The 

key lies in how to transform implicit topology optimization results into explicit 

topology optimization results described based on components. Figure 3 demonstrates 

the specific fitting process from SIMP results to component layouts. Initially, SIMP's 

density distribution is converted into a topology skeleton using image processing, 

where pixels above a threshold are set to 1 (others to 0) for binarization. MATLAB's 

bwmorph algorithm skeletons the density field, from which endpoints and branches 

are thickened for clarity, then removed for component fitting. After diagonal filling 

and cleaning to refine the skeleton, the regionprops function calculates geometric 

properties (centroid, axis lengths, orientation) for each region. These properties guide 

the fitting of explicit topology structures with rectangular components, forming a 

structural array that outlines component layouts for further design and analysis. 
 

 
Figure 3: MMC Fitting Process of SIMP Results 
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As illustrated in Figure 3, the preliminary component layout clearly presents the 

topological configuration of the SIMP optimization results. Subsequently, based on 

this initial configuration, we achieve a precise implicit-to-explicit model 

transformation by solving the following optimization problem, which is formulated 

as: 
 

𝐹𝑖𝑛𝑑   𝑫 = (𝑫1, 𝑫2, … , 𝑫𝑛)

𝑀𝑖𝑛   𝐶 = ∫(𝝆𝑠 − 𝝆𝑐)
2𝑑𝛺

𝐷

(8)
 

 

Here, 𝑫 represents the design variables of the components, and 𝑛 denotes the total 

number of existing components in the initial structure. 𝝆𝑠  and 𝝆𝑐  respectively 

represent the density distribution of the implicit and explicit models. Furthermore, the 

sensitivity of the objective function to the design variables can be expressed as: 
 

𝜕𝐶

𝜕𝑑
= ∫ 2(𝜌𝑐

e − 𝜌𝑠
𝑒)
𝜕𝜌𝑐
𝜕𝑑

𝑑𝛺
𝐷

= ∫ 2(𝜌𝑚
e − 𝜌𝑠

𝑒)∑
𝑞

4
(
𝜕𝐻𝜖(𝜙𝑖

𝑒)

𝜕𝑑
)

𝑞−14

𝑖=1

𝑑𝛺
𝐷

(9)

=
𝑞

2
∫(𝜌𝑚

e − 𝜌𝑠
𝑒)∑(

𝜕𝐻𝜖(𝜙𝑖
𝑒)

𝜕𝑑
)

𝑞−14

𝑖=1

𝑑𝛺
𝐷

 

 

where 𝜌𝑐
e, 𝜌𝑠

𝑒  refer to the elemental densities of the explicit and implicit models, 

respectively. 𝜕𝐻𝜖(𝜙𝑖
𝑒)/𝜕𝑑  is obtained through differential or analytical methods, 

detailed in the referenced literature [18,19]. 
 

To transform an explicit geometric model into an implicit model, replacing 𝝆𝑐 with 

𝝆𝑠 suffices. The entire transformation process is detailed in Figure 4. 

 

 
Figure 4: Final MMC Fitting Outcome 

 

For converting an implicit model into an explicit model described by voids (e.g., 

voids described using closed B-spline curves), one can skip the initial component 

construction step and proceed directly to void fitting, updating Eq. (10) as follows: 
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𝐹𝑖𝑛𝑑   𝑩 = (𝑩1, 𝑩2, … , 𝑩𝑛)

𝑀𝑖𝑛   𝐶 = ∫(𝝆𝑠 − 𝝆𝑐)
2𝑑𝛺

𝐷

(10)
 

 

Here, 𝑩 represents the design variables for the voids, and 𝑛 denotes the total number 

of voids used. The reason for not requiring an initial configuration when using void 

descriptions is due to the superior deformation capability of the B-spline-based void 

descriptions compared to component descriptions. Thus, even if the explicit 

description's initial configuration is far from the final one, an optimal void layout can 

be quickly achieved. The analytical sensitivities for Eqs. (8) and (9) are 

straightforward and not elaborated upon here. 
 

3.2  Interactive Method 
 

Within the current optimization framework, engineers are allowed to intuitively 

participate in the design optimization process (at which point the optimization is 

paused) to provide more precise guidance for subsequent optimizations. Once the 

interactive phase concludes, the optimization program resumes. Notably, subsequent 

optimizations can be conducted either within the SIMP framework or directly on the 

MMC framework, as we possess both explicit and implicit optimization models. 

Below, we detail the technical nuances of conducting structural topology updates 

based on the needs of manual intervention. 
 

3.2.1  Component Addition Method 
 

In certain scenarios, to enhance the performance of specific areas within a structure, 

it becomes necessary to add components at particular locations. Furthermore, 

components with specific layouts may offer better performance characteristics, 

necessitating the replacement of existing designs with components of specific shapes. 

Engineers can adjust an elliptical-like shape by dragging, thereby obtaining two 

endpoints of the quasi-ellipse, (𝑥1, 𝑦1), (𝑥2, 𝑦2) . Based on these points, key 

parameters for the new component are calculated according to Eq. (11), including its 

length 𝑙, center coordinates (𝑥0, 𝑦0), and its angle 𝜃 relative to the horizontal line, to 

construct a new component through these points. Thickness does not need to be 

calculated; it can be directly obtained by adjusting the length of the short axis of an 

ellipse. 
 

𝑙 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

(𝑥0, 𝑦0) = (
𝑥1 + 𝑥2
2

,
𝑦1 + 𝑦2
2

) (11) 

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑦2 − 𝑦1
𝑥2 − 𝑥1

) 

 

The added component will be optimized within SIMP as a non-designable solid 

domain. If subsequent optimizations are conducted under the MMC framework, 

corresponding adjustments to parameters within MMA are required, including 

expansions to the upper and lower bound vectors. 
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3.2.2  Component Removal and Adjustment Method 
 

In some cases, to improve product reliability and accommodate manufacturing 

capabilities, simplification of the design is necessary, especially by eliminating 

unnecessary parts and interfaces. This involves the removal of specific structural 

components from certain areas of the structure. We propose an interactive mode-based 

component removal method. Initially, a Topological Description Function (TDF) is 

used to determine whether a point clicked by the engineer belongs to a specific 

component. If the value of 𝜙𝑖(𝒙) for a component at the clicked point's coordinates is 

greater than 0, it is considered to belong to the 𝑖-th component; otherwise, it does not. 
 

{

𝜙𝑖(𝒙) > 0, 𝑖𝑓 𝒙 ∈ 𝛺𝑖

𝜙𝑖(𝒙) = 0, 𝑖𝑓 𝒙 ∈ 𝜕𝛺𝑖

𝜙𝑖(𝒙) < 0, 𝑖𝑓 𝒙 ∈ 𝐷\𝛺𝑖\𝜕𝛺𝑖
(12) 

 

Component removal is achieved by either removing the corresponding variables 

from the design variable vector or setting the component's variable value to zero, i.e., 

𝑫𝑖 = 0 . If subsequent optimizations are conducted under the MMC framework, 

corresponding parameters in MMA must be appropriately removed or adjusted. 

Removed components will be optimized in SIMP as non-material non-designable 

domains. By comparing the density field before and after interaction, only the changed 

parts are set as non-designable domains to avoid affecting overlapping areas of 

components. 
 

Using a similar method, the corresponding component can be identified, allowing 

for the modification and editing of relevant dimensions to achieve adjustments to the 

structural elements. 
 

4  Numerical Examples 
 

4.1  Structural Buckling Optimization Example 
 

In the domain of structural optimization, enhancing buckling performance presents 

a significant and challenging task. This section elaborates on effectively improving a 

structure's buckling performance through a canonical example of a short cantilever 

beam. As depicted in Figure 5a, the design domain measures 1×2, with the left 

boundary fixed and a concentrated load P=1 applied at the mid-point of the right side. 

The design domain is discretized into 50×100 elements with a volume constraint of 

0.15. Unless otherwise specified, all examples utilize the same material properties, 

with the elastic modulus 𝐸 set to 1 and Poisson's ratio 𝑣 set to 0.3. 
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Figure 5: Short Cantilever Beam Design Problem and Its Compliance Optimization 

Results 
 

Figure 5b shows the optimization result achieved by minimizing compliance under 

the same design domain, boundary conditions, and load scenario. The structure 

consists of two uniformly thick bars distributed above and below. From the 

perspective of compliance optimization alone, this structure is optimal; however, its 

buckling performance is relatively weak. Considering the direction of the applied load, 

the bottom bar bears compression. Enhancing the structure's buckling performance 

can be effectively achieved by adjusting the thickness of the bottom bar or changing 

its position to alter its length.  
 

 
Figure 6: Manual Intervention Operations and Final Compliance Optimization 

Results 
 

Optimization of the same example is carried out by adopting the proposed 

optimization strategy. In this case, adjustments are made to the existing design's 

bottom bar, removing it and relocating it slightly higher. The adjusted optimization 

result, as shown in Figure 6, reduces the length of the bottom bar and increases its 

angle relative to the direction of the applied load, effectively reducing the stress on 

the bar and enhancing overall buckling performance. 
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Notably, despite these adjustments, the structure's compliance was almost 

unaffected, only increasing by 4.21%, while the Buckling Load Factor saw an 

improvement of 19.09%. This result indicates that although the adjusted structure did 

not achieve the optimal state of buckling performance, it managed to enhance a certain 

aspect of the structure's performance in a rapid manner. 
 

Traditional buckling optimization methods, even when calculating only the first 

eigenvalue (i.e., 𝑛𝑒𝑖𝑔 = 1 ) and setting the eigenvalue calculation tolerance to 

𝑡𝑜𝑙 =1e-3, still require more than 5 minutes to solve. However, with the optimization 

strategy proposed in this study, even including manual operation time, the entire 

process takes less than 1 minute, significantly improving efficiency. It is noteworthy 

that as the problem scale increases and the number of design variables in the design 

domain grows, this time difference will become even more pronounced. 
 

4.2  Rich Design Generation 
 

This study introduces an innovative interactive structural design approach aimed 

at generating diverse structural distributions during the design process, akin to the 

working mechanism of Generative Adversarial Networks (GAN). However, the 

uniqueness of this method lies in its independence from the complex training 

processes required by GANs, relying instead on direct designer interaction to set 

various initial distribution parameters, guiding the diversity of structural designs. 
 

Specifically, designers can easily set initial distribution parameters through an 

intuitive interactive interface, serving as the basis for generating structural samples. 

A significant advantage of this method is its ability to rapidly produce a series of 

diverse design solutions in a short time, eliminating the need for prolonged training 

associated with GAN models. Moreover, the structures generated by this method 

possess more practical physical significance and engineering applicability compared 

to those generated by GANs, as they represent local optimal solutions for specific 

optimization problems. 

 

 
Figure 7: Example of Interactive SIMP Optimization Design Based on Movable 

MMC Components 
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Figure 7 showcases the interactive-guided structural topology optimization process 

using the MMC technique, conducted through interactive guidance. The optimization 

case is the MBB beam problem; given the structure's symmetry, only half of the design 

domain is displayed, measuring 2×1. In this study, to enhance design space diversity 

and explore its potential, MMC technology is introduced to set initial distributions 

before optimization, allowing users to guide the formation of initial distributions 

through interactive operations, thus influencing the final optimization results. The 

Figure 7 presents 12 unique design solutions. In each subplot, the left side shows the 

structure layout under MMC interaction, while the right side reveals the results of 

structural optimization conducted using the SIMP method guided by this layout. 

Except for the first design, with a compliance of 106.51, the compliance values for 

the remaining designs range from 97.98 to 101.92. 
 

5  Conclusions and Contributions 
 

This paper successfully constructs and implements an innovative topology 

optimization framework that extensively expands upon the traditional density-based 

compliance minimization approach, ingeniously integrating elements of human-

computer interaction. This unique design philosophy fully leverages the expertise and 

extensive experience of design engineers, offering them greater autonomy in the 

design process. Engineers can proactively adjust specific features of the structure 

based on actual needs, effectively seeking the optimal balance between complex 

performance requirements and manufacturing constraints. The key innovation of this 

study lies in the introduction of the MMC concept, which transforms the results 

generated by the standard SIMP method into a more intuitive and manageable rod-

like structural form. This transformation not only enhances the flexibility and 

practicality of the design but also makes the final design results more coherent. 
 

Through the application analysis of examples, the effectiveness of this framework 

in improving design efficiency and reducing computational resource consumption is 

fully demonstrated. Especially in daily and on-site design scenarios, this framework 

shows its unique advantages. However, it should be clarified that although this 

framework provides an efficient design strategy, it is not intended to completely 

replace traditional, more complex topology optimization methods. For scenarios 

capable of utilizing high-performance computing resources, traditional methods 

remain the preferred choice. 
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