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Abstract

This study investigates the effectiveness of multi-objective optimization versus single-
objective optimization in structural engineering design. Through a comparative anal-
ysis, employing the same objective functions in both approaches across various sce-
narios, we assess their performance in balancing conflicting objectives while main-
taining solution constraints. Single-objective optimization strategies involve formu-
lating constraints based on one objective or constructing a scalar objective function
with a single weight coefficient. Our findings reveal that while both approaches yield
similar results, they differ significantly in complexity. Multi-objective optimization
poses challenges in balancing competing objectives, while single-objective optimiza-
tion with scalarization requires careful construction of the scalar objective function
and weight parameter selection. However, single-objective optimization simplifies the
optimization process when one objective is reduced to constraints. Additionally, the
inclusion of auxiliary objective functions aids in solution refinement. Overall, our
analysis highlights the potential for employing single-objective optimization as an al-
ternative to multi-objective optimization, facilitating problem definition and enabling
the incorporation of auxiliary objectives for enhanced optimization outcomes.
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1 Introduction

Multi-objective optimization (MOO) involves simultaneously optimizing multiple con-
flicting objective functions while adhering to various constraints [1,2]. This approach
aims to find a set of solutions that represents a trade-off between different objectives.
On the other hand, scalarization is a technique that simplifies a multi-objective opti-
mization problem by combining multiple objectives into a single scalar objective [3,4].
Doing so transforms the problem into a more manageable single-objective optimiza-
tion task.

Scalarization offers several benefits when applied in multi-objective optimization
scenarios. Firstly, it simplifies the problem by converting it into a single-objective
optimization task, facilitating the application of conventional optimization algorithms
[3,5–9]. Additionally, scalarization provides means to obtain a discrete representation
of the set of Pareto optimal solutions, which are solutions that cannot be improved
in one objective without sacrificing performance in another [1, 4]. Despite its advan-
tages, the scalarization approach has some drawbacks. One notable drawback is the
time-consuming nature of the method, as it requires running multiple single-objective
algorithms for each possible solution [6]. This process can become particularly bur-
densome for complex optimization problems with many objectives. Additionally,
although scalarization can be parallelized to expedite execution, it still necessitates
running multiple single-objective algorithms without the ability to share knowledge
between runs [6].

Single-objective optimization can replace multi-objective optimization not only
through scalarization but also by treating one of the objective functions as the pri-
mary optimization target and introducing the other as a constraint. Single-objective
optimization without constraints focuses on optimizing a single objective function
without any imposed limitations [10, 11]. In this scenario, the goal is to find the
optimal value of the objective function without considering any external factors. Con-
versely, single-objective optimization with constraints involves optimizing a single
objective function while considering certain constraints that restrict the feasible solu-
tion space [11]. These constraints introduce additional challenges to the optimization
process, limiting the range of possible solutions.

In conclusion, multi-objective optimization involves simultaneously optimizing mul-
tiple conflicting objectives, while scalarization simplifies the problem by transform-
ing it into a single-objective optimization task. Single-objective optimization with
constraints introduces additional challenges by considering constraints that limit the
feasible solution space. Scalarization offers advantages such as simplification of the
problem and obtaining Pareto optimal solutions. Still, it also has drawbacks, such as
time-consuming execution and the need to run multiple single-objective algorithms.
Different optimization algorithms have been employed to assess the efficacy of scalar-
ization in multi-objective optimization, especially in constrained scenarios where ef-
fectively managing constraints is crucial. The surrogate models offer significant ad-
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vantages in optimizing e.g. the dynamic properties of engineering structures; chal-
lenges such as the curse of dimensionality and the need for accurate and computation-
ally efficient models remain areas of focus for further research and development in
this field.

This paper compares results between two-objective optimization and single-objective
optimization approaches. The same objective functions were examined in each of the
three considered cases. In the single-objective optimization approaches, one of the
objective functions was utilized to formulate constraints for optimizing the second ob-
jective function, or a single scalar objective function was constructed using a single
weight coefficient.

The possibility of replacing multi-objective optimization with a single-objective
optimization approach, without sacrificing the constraints and goals imposed on the
solution by both considered objective functions, provides an opportunity for a more
straightforward definition of the problem at hand and the potential inclusion of addi-
tional auxiliary objective functions.

2 The model and the approach applied

2.1 The model investigated

The investigated structure is a shell of the revolution created by rotating a line connect-
ing two points. The length of the line (along the revolution axis) equals L = 6.0 m,
the upper radius Rup = 61.03 cm, the lower radius Rdown = 1.3Rup. The thickness
of the shell is equal to t = 1.6 cm and is divided into eight composite layers of equal
thickness. The end of the shell under analysis (with Rdown = 1.3Rup = 79.34 cm) is
fixed — all its displacements are blocked.

Each shell layer can be made of a different composite material, with a different di-
rection of the composite reinforcement fibres. Three materials are taken into account:
carbon fibre-reinforced polymer (CFRP), glass fibre-reinforced polymer (GFRP), and
basalt fibre-reinforced polymer (BFRP). Their material properties and costs are taken
from [12]. The material costs are unit-less since they show only the mutual relation of
the costs of different materials. All properties of the applied materials are summarized
in Table 1.

Ea Eb Ec νab νac νbc Gab Gac Gbc ρ Cost
GPa ×103 GPa kg/m3 —

CFRP 120.0 8 8 14.0 28.0 28.0 5 5 3 1536 10.20
GFRP 40.0 4 4 26.0 44.0 28.0 3 3 3 1320 1.36
BFRP 33.1 6 6 90.6 45.3 45.3 3 3 3 1765 1.00

Table 1: Material properties of three considered composite materials.
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The finite element model is described by sixteen varying parameters that are subject
to further optimization. The variable parameters are as follows: (a) material of each
of the eight composite layers that make up the structure shell; µi, i = 1, 2, . . . , 8,
µi ∈ 1, 2, 3, (b) lamination angle of the eight composite layers; λi, i = 1, 2, . . . , 8,
−90◦ ≤ λi ≤ +90◦ (real values or integer ones with a step of 5◦, 15◦ or 45◦).

The finite element model comprises square-like, multilayered shell 4-node MITC4
elements (first-order shear theory). Each layer corresponds to one composite layer
with possibly different material properties and lamination angles. The base size of the
elements, h, is chosen to be almost equal to h = 5cm (it differs slightly in the circum-
ferential and longitudinal directions; moreover, it also differs for different locations
along the axis of the whole shell).

2.2 Optimization of fundamental natural frequency with regards
to structure’s cost

The standard formulation of the multi-objective optimization problem—find the val-
ues of the arguments collected in a 16-element vector p for which two considered
objective functions yield minimal values possible—is given as:

popt = argmin
p∈P16

{gf (p), gc(p)} , (1)

where p is a vector of structure parameters, and P16 is here the 16-dimensional space
of the decision parameters gathered in vector p.

The first objective function gf (p) concerns the maximization of the structure’s fun-
damental natural frequency and is expressed by the following equation:

gf (p) = −f1 . (2)

The second objective function allows for—simultaneous with the optimization of the
dynamic characteristics—minimization of the cost of materials necessary for con-
structing the structure:

gc(p) = cost(p) . (3)

The simultaneous optimization of the fundamental natural frequency f1 and the
structure’s costs cost(p) can also be solved using scalarization approach, where the
only scalar objective function gs(p) is a linear combination of gf (p) and gc(p):

gs(p) = −(1− κ) gf (p) + κ gc(p), for 0 ≤ κ ≤ 0.5 , (4)

where κ is a weighting factor. The optimization process is thus given as follows:

popt = argmin
p∈P16

{gs(p)} . (5)
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The third approach tested in the paper is a single-objective optimization of the
fundamental natural frequency f1 with some constraints on the cost of the structure:

popt = argmin
p∈P16

{gf (p)} for cmin ≤ cost(p) ≤ cmax , (6)

where cmin and cmax are carefully selected limits of a particular cost bound.

The optimization problems given by Equation (1), Equation (5) and Equation (6)
are herein solved using non-dominated sorting genetic algorithm II (NSGAII) [13],
a GA-based multi-objective search method that is not derivative-based. During the
optimization of the dynamic properties of the investigated structure, the number of
calculations of dynamic properties corresponding to different values of the model pa-
rameters reaches at least several hundred or, more probably, several thousand. Apply-
ing the finite element model leads to highly time-consuming numerical simulations.
A neural network-based surrogate model (or metamodel) is proposed to overcome this
problem, before the application the surrogate model is trained on examples obtained
applying finite element model.

3 The results

Figure 1 depicts results obtained from optimization defined according to the three ap-
proaches specified in Equation (1), Equation (5) or Equation (6) (yellow, blue and red
lines, respectively). In each case, four distinct approaches were considered, where the
values of lamination angles were treated as continuous variables (symbolically repre-
sented as interval 0o in Figure 1a) or as integer variables with steps of 5o (Figure 1b),
15o (Figure 1c), or 45o (Figure 1d).

The analysis of Figure 1 demonstrates that in each of the described approaches
to optimization, very similar results were obtained for both fundamental natural fre-
quency and structure’s cost. The Pareto fronts shown in the figures were obtained
either directly from multi-objective optimization or through a series of successive cal-
culations (for different values of the κ coefficient in scalarization or different values of
prescribed limits imposed on the overall structure’s cost), each of them corresponding
to a single-case single-objective optimization.

Despite obtaining similar results, the complexity of the considered problems varies
significantly. In the case of multi-objective optimization, the challenge lies in balanc-
ing two conflicting objectives. When scalarization is employed, particular attention
must be paid to constructing the scalar objective function and the appropriate selec-
tion of κ. Only in the last approach, where one objective function has been reduced to
constraints imposed on the obtained solution, is the approach straightforward, and the
resulting outcome is independent of user-defined parameters.
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Figure 1: Three approaches to optimizing fundamental natural frequency f1, simulta-
neously with cost minimization. Different lamination angles intervals veri-
fied: (a) real value, interval of 0o, (b) 15o, (c) 15o, (d) 45o.

Auxiliary objective functions can aid the search for an optimal solution. For ex-
ample, in the considered problem, after encoding the construction cost as constraints,
a second objective function supporting the optimization of frequency f1 can be added.
In the discussed task, such a supporting function could, for instance, minimize the dif-
ference between the first two natural frequencies. It has been observed that f1 reaches
its maximum value at mode shapes crossing, precisely when f2 = f1. The formula
describes the optimization task:

popt = argmin
p∈P16

{gf (p), gf2(p)} for cmin ≤ cost(p) ≤ cmax , (7)
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where

gf2(p) = −|f2 − f1|. (8)

The results of applying MOO with supporting objective functions are shown in Fig-
ure 2. There is no visible difference between the classical MOO approach and the
MOO with supporting functions. However, the MOO with supporting functions seems
more reliable and stable.

25 30 35 40
f1  [Hz]

10

20

30

40

50

60

70

80

C
os

t [
-]

MOO supported
MOO

Figure 2: Maximization of fundamental natural frequency f1 with supporting objec-
tive function; 15o interval.

4 Conclusions

This study compared the outcomes of two-objective and single-objective optimiza-
tion approaches, each considering the same objective functions in three cases. In
single-objective optimization, either one objective function was utilized to formulate
constraints for optimizing the second objective function, or a single scalar objective
function was constructed using a single weight coefficient.

The potential replacement of multi-objective optimization with a single-objective
optimization approach, while retaining the constraints and objectives imposed by both
considered objective functions, offers the advantage of simplifying problem definition
and allowing for additional auxiliary objective functions. Despite achieving similar
results, the complexity of the problems varied significantly. Multi-objective optimiza-
tion presents a challenge in balancing conflicting objectives, while scalarization re-
quires careful construction of the scalar objective function and appropriate selection
of weight parameters. However, in cases where one objective function is reduced to
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constraints, the optimization approach becomes more straightforward, yielding out-
comes independent of user-defined parameters.

Utilizing auxiliary objective functions can aid in searching for an optimal solution.
For instance, in the considered problem, a supporting objective function minimizing
the difference between the first two natural frequencies was introduced after encoding
construction costs as constraints. This approach maximizes the first natural frequency
while minimizing the discrepancy between the first two frequencies, particularly at
mode shapes crossing. The results indicate that multi-objective optimization with
supporting objective functions produces outcomes similar to classical multi-objective
optimization but with potentially increased reliability and stability.
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