
Abstract

A measuring method of rail axial load based on vibration modes is discussed. In

particular, the influence of the thermal dependency of rubber pads on the natural fre-

quency of the pinned–pinned mode is considered. To this end, in the numerical track

model a rotational spring depending on the temperature is attached at each rail sup-

port. The identification of the temporal equivalent rotational stiffness reflecting the

rail pad and fastener is then attempted. Numerical results show that the identification

using the ratio of bending moment to rotation angle of rail measured around the rail

support has the best performance. In this case, the measurement with an error of 0.1%

is required to assure the identification accuracy of ±50kN.

Keywords: continuous welded rail, rail axial load, pinned–pinned mode, resonant

frequency, pad stiffness, thermal dependency, identification.

1 Introduction

Employment of continuous welded rails (CWR) contributes to the improvement of the

passenger comfort and the reduction of vibration and noise. In spite of this advantage,

the CWR has a serious issue that the track may suffer buckling or breaks due to the

thermal stress. Regarding the CWR track, elastic longitudinal displacement of rails is

restrained except both ends of rails. Therefore, thermal stress of the rails inevitably

occurs in the longitudinal direction according to variations in temperature. For ex-

ample, excessive compressive stress by the intense heat in the summer season often

causes buckling of track, and the excessive tensile stress by the bitter cold weather

in the winter sometimes induces breakage of rails. Therefore, it is very important to
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monitor the axial load of rails in the context of the maintenance of railway.

In the past few decades a number of measuring methods have been proposed.

Among them, a method based on displacement measurement will be the most prac-

tical and popular one. In order to evaluate the axial load, the longitudinal strain of

a rail is calculated from the relative displacement between two observation points on

the track. Although this method gives an average value within a range of rail, local

strain on the rail surface obtained with a strain gauge or other instruments [1] is also

available. While these are methods for evaluating the strain based on the macroscopic

deformation of the rail, indirective approaches utilizing physical phenomena such as

the magnetoelastic effect [2] and the ultrasonic properties [3–5] have been proposed

as other candidates. A drawback common to the abovementioned methods is the ne-

cessity of initial state. For example, since the rail stress consists of the elastic and

the thermal stresses, the increment of strain and temperature since the rail installation

is needed for the evaluation of the absolute stress. Therefore, these methods are not

applicable to existing tracks. Application of the X-ray stress measurement technique

is also attempted [6]. However, this approach gives microscopic stresses at a point in

the vicinity of the rail surface. Since, in general, residual stresses distribute inhomo-

geneously inside the rail, it is difficult to evaluate the axial load which is given as the

resultant of normal stress on a section of rail.

A method which can obtain the absolute longitudinal stress and has already been

applied to onsite measurement is the lift method [7–9]. This procedure consists of two

steps, i.e. the rail releasement from fasteners over the distance of 30m and the rail

lifting. A principle that the flexural rigidity of rail depends on the axial load enables

us to measure it without the initial state. However, this technique is available only for

tensional stress and takes rather a long time due to unfastening over the long distance.

The vibration method is applicable not only to tensional but to compressional ab-

solute stress [10–12]. In this method, utilizing a phenomenon that the vibration modes

depend on the axial load, its value is estimated from the resonant frequencies. In spite

of this simplicity, since the influence of rail support conditions is innegligible and

these are unknowns, it is very difficult to realize.

A similar technique to the vibration method has been proposed [13, 14]. In this

method a rail span released from several fasteners is forced at a constant frequency and

the wavenumber of the lateral bending mode is observed. The axial load is estimated

using its linear relation to the wavenumber change from the stress-free state. Since the

guided wave modes are independent of the rail supports, this method is not affected

by any boundary conditions. However, in order to ensure a required quality, very

high accuracy is needed for the evaluation of parameters such as the wavenumber of

stress-free mode.

As mentioned above, both the vibration and the wavenumber methods have yet

problems should be overcome. The authors and collaborators have investigated the

feasibility of the former approach from various points of view. In [15] the dispersion

analysis of an axially compressed infinite rail which is discretely supported by sleepers

was achieved using a three-dimensional Timoshenko beam model. Based on this re-
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sult, the influence of the stiffness of pads and fasteners on the relationship between the

natural frequencies of standing wave modes and the axial load was discussed. It was

found that the pinned–pinned mode which has nodes at each sleeper position is sensi-

tive to the axial load while rather insensitive to the rail supports, therefore is suitable

for the present purpose. The axial stress-natural frequency relation of an infinite peri-

odic track having a constant curvature was obtained by dispersion analysis [16]. The

influence of randomness in sleeper spacing on the resonant frequency was discussed

in [17], and the importance of this stochasticity was shown. In [18] applicability of

the method to tracks having a switch was studied. To this end, an impedance matrix

representing a semi-infinite axially stressed CWR has been derived. Effect of me-

chanical nonlinearlity in rail supports was examined in [19]. It was found that, under

this condition, the amplitude of harmonic load does not affect the sensitivity of the

resonant frequency to the axial stress but the frequency itself. While in these works

numerical experiments were employed, a field experiment was conducted [20] and a

linear relationship between the axial load and the resonant frequency was observed.

These results support the capability of the vibration method. However, as indicated

by many researchers, it is necessary for its utilization to remove the influence of sup-

port conditions. Besides, experimental results [20] claimed that the sensitivity of the

resonant frequency to the axial load of a numerical model is lower than that of the

real track. This result implies that the conventional numerical model is insufficient to

capture the dynamic behavior of tracks.

Since in the above mentioned site experiment the rail axial stress was caused by

the thermal change, the stiffness of rail pads made of rubber might be reduced during

the thermal loading. This effect induces the reduction in the rotational stiffness of rail

pad and then the decrease in the resonant frequency of the track. Therefore, the larger

the thermal stress, the larger the frequency reduction. As a result of this, the thermal

dependency of pad stiffness will lead to the increase of the apparent sensitivity of

resonant frequency to the rail axial load.

In order to verify the above hypothesis, in this paper a numerical track model con-

sisting of a rail, sleepers and pads is considered. The rotational stiffness at a rail

fastener is represented by a rotational spring attached at the rail support. The depen-

dence of the spring constant on the temperature is taken into account in the numerical

model. Through numerical analyses, the influence of the thermal dependency of the

rotational stiffness on the relationship between the rail axial load and the resonant

frequency is investigated.

This modeling implies that not only the resonant frequency but also the pad stiff-

ness and its thermal dependency are necessary for the measurement of rail axial load.

However, in general, these properties will have some randomness and may suffer time

related deterioration. Therefore, it will not be a practical strategy to reflect these as-

pects in the numerical model a priori. To cope with this difficulty, in this paper an

identification of the temporal equivalent rotational stiffness is attempted based on a

numerical model.

In Section 2, influence of the thermal dependency of pad stiffness on the reso-

Influence of Thermal Dependency of Pad Stiffness 25



nant frequency of a track is discussed based on numerical and experimental results.

Section 3 describes the vibration mode analysis which is used in the identification of

rotational stiffness of a rail support. Physical quantities used as objective functions

for the identification are described in Section 4. In Section 5, the identification by

these quantities is attempted through numerical experiments, and error tolerance of

measurements required to assure identification accuracy is examined.

2 Influence of thermal dependency of pad stiffness on
dynamic nature of axially stressed rail

2.1 Track modeling

In this study time-domain dynamic response analyses of a finite track model are sub-

stituted for the measurement. The track model consists of a rail subjected to an axial

load N , with sleepers and pads as shown in Figure 1. The ballast is represented by

Viogt units. In general, the rail is restrained somewhat from the rotation due to the

existence of rail pad and fastener at each sleeper. To take into account this effect, an

equivalent rotational spring k is attached at every rail support. Although the ballast

has also the rotational stiffness, the temperature dependency is existing only in the

rail pad. As shown in Figure 3, this effect can be captured by the simple model il-

lustrated in Figure 1. Therefore, only the rotational stiffness of rail pad is considered.

Figure 1: Track model for time-domain response analysis

It is assumed that in the measurement the track vibration is excited with an impulse

hummer. To simulate this, a unit impact force is applied at a midspan for 10×10−4

second as shown in Figure 2, with time increment of 5×10−5 second. In accordance

with the experiments performed by Aikawa, et al. [20], the Japanese 50kgN rail is
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Figure 2: Unit impact force applied at a midspan

assumed. The rail is modeled as a Timoshenko beam and discretized by 12 elements

for each sleeper span. The track consists of 360 sleeper bays. Parameters in the track

model are summarized in Table 1. In this table parameters of rail and sleeper are set

based on the experiment. Since the mechanical conditions of the rail pad and ballast

are insignificant in the pinned-pinned mode, standard values are assumed. Since, in

mass density (kg/m3) 7880

cross-sectional area (m2) 64.05×10−4

50kgN rail Young’s modulus (GPa) 206

Poisson’s ratio 0.33

geometrical moment of inertia (m4) 1960×10−8

shear factor 0.394

sleeper mass (kg) 80

spacing (m) 0.7374

rail pad spring constant (MN/m) 120

damping coefficient (kN·s/m) 100

ballast spring constant (MN/m) 30

damping coefficient (kN·s/m) 50

Table 1: Parameters in track model

general, distribution of the rail axial load is not uniform, it is desirable to investigate

the influence of the stress variation on the present method. However, in this study we

focus only on the effect of rotational stiffness of rail supports. Therefore, the longi-

tudinal variation of the axial load is not modeled. In the following, vertical loading

and deflection are considered. Based on an experimental result [21], in this paper the
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temperature dependency of stiffness is expressed by the following relation :

k =
k0(T0 + 42.12)

T + 42.12
(1)

where k0 is the rotational stiffness corresponding to the temperature T0. These values

are set as k0=5.21MN·m/rad and T0=20◦C. In order to reproduce the sensitivity of the

resonant frequency to the axial load in [20], based on a pre-analysis, the rotational

stiffness at each rail fastener is set rather higher. Notice that, in a real track the ap-

parent pad stiffness will be increased due to the damping force under high frequency

vibration.

The rail axial load is introduced as the thermal stress. Hence, both of the axial load

and the rotational stiffness are given as functions of the temperature.

2.2 Numerical Results

As mentioned in [17], the pinned–pinned mode which has nodes at each sleeper sup-

port is one of the most suitable modes for assuming the axial load distribution among

the standing wave modes of track. In the numerical experiments the resonant fre-

quency corresponding to the pinned–pinned mode is identified from the Fourier spec-

trum of rail acceleration obtained by the time-domain response analysis. The obser-

vation point of the rail deflection is located at the loading point.

The relationship between the pinned–pinned resonant frequency and the rail axial

load is shown in Figure 3. The numerical result for a track model with pad stiffness

independent of the temperature is also plotted. Solid lines are theoretical relationship

between the axial load and the resonant frequency obtained for different pad stiffness

k. The slopes of these lines are identical, and determined by mode analysis which

will be mentioned in Section 3. The dashed line is linear regression of the experi-

ment. “Relative resonant frequency” in the figure stands for the relative value from

the resonant frequency of uncompressed rail, i.e. N=0. The numerical result with the

thermal dependency plotted by filled circles is obtained for the pad model of Equa-

tion (1). Since in this model the rotational pad stiffness is given by a function of the

temperature, its value decreases with increasing the thermal stress. From the figure, it

can be seen that the numerical result for the temperature dependent model is in good

agreement with the experiment of [20], while the temperature independent model has

an obvious discrepancy. Consequently, the consideration of the thermal dependency

of pad stiffness is essential in the context of the present measuring method.

3 Vibration mode analysis

From the above comparison between the numerical analysis and the site experiment,

it was found that the consideration of the thermal dependency of rail pads is essential

to simulate the present phenomenon. However, this modeling implies that not only the
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Figure 3: Influence of thermal dependency of rotational stiffness on relation between

axial load and relative resonant frequency

resonant frequency but also the pad stiffness and its thermal dependency are necessary

for the measurement of the rail axial load. Meanwhile, the rotational stiffness of real

track is affected not only by the pads but also by the rail fasteners. Furthermore, since

the material parameters of rubber pad may have randomness, it is necessary to know

the thermal dependency of pads in each track. However, it is not practical to introduce

these effects into a track model used for the axial stress evaluation. From the numeri-

cal result shown in Section 2.2, it can be understood that, once the resonant frequency

f0 at N=0 is obtained for the present rotational stiffness, the axial load can be eval-

uated by its theoretical sensitivity to the frequency. Since this resonant frequency f0
depends on the rotational stiffness, the present issue is reduced to the identification of

the equivalent rotational stiffness. Therefore, we set the equivalent rotational stiffness

that represents all effects as unknown quantities. In order to identify the temporal ro-

tational stiffness based on the numerical model, we consider the eigenvalue problem

of an infinite track. The identification of the unknown stiffness will be achieved based

on the eigenmode. In this section the outline of the mode analysis is described.

3.1 Modeling of infinite track

In general, a CWR track can be represented as a periodic structure characterized by

the sleeper spacing L. A dynamic problem of this infinite system can then be reduced
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rail

rail pad

sleeper

sleeper pad

L

unit cell

Figure 4: Unit cell of track model and pinned–pinned mode

to that of a substructure called unit cell as shown in Figure 4. In this study a unit cell

consisting of a rail, a sleeper and springs representing pad and ballast is taken into

account. In order to reproduce the moment that acts at the rail pad, each rail support

is modeled by a rotational spring as in the time-domain analysis.

3.2 Eigenvalue problem

The equation of motion of a unit cell is given by

[
W̄

]T [
K−NC− ω2M

] {U} =
[
W̄

]T {F} (2)

where {W} is a virtual displacement vector, {U} and {F} are nodal displacement

and force vectors. (¯) and ( )T stand for conjugate and transpose. [K] and [M] are the

stiffness and mass matrices, respectively. ω is the circular frequency. [C] is a matrix

concerning the axial load N .

By virtue of the Floquet’s principle [22], a steady state solution satisfies the follow-

ing relation

uL = u0e
−iκL, fL = −f0e

−iκL (3)

where u0 and uL are nodal displacements at both ends of x=0 and x = L. f0 and fL
are nodal internal force vectors at these points. κ is a propagation constant.

Equations (2) and (3) lead to an eigenvalue problem as

[K′ −NC′] {U′} = ω2 [M′] {U′} (4)

where ( )′ denotes that the matrices and displacement vector have been degenerated

due to the elimination of uL and fL using the relations of Equation (3). Notice that

components of the Hermitian matrices [K′], [C′] and [M′] are given by functions of the

propagation constant κ. Therefore, the eigenvalue problem of Equation (4) gives the

dispersion structures, i.e. the relation between κ and ω for wave modes propagating

in the track. The pinned–pinned mode is given by a standing wave mode at κ = π/L.
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4 Identification of rotational stiffness

In order to identify the equivalent rotational stiffness, we consider physical quantities

that depend on the rotational stiffness.

4.1 Physical quantity given by ratio of bending moment to rota-
tion angle

A simplified model of rail and rail fastner is shown schematically in Figure 5. As-

Figure 5: Schematic illustration of rail and fastener

suming that at both points on the left and right sides of a rail fastener, the dynamic

response is in the nearly antisymmetric state for the pinned–pinned resonance, the

equilibrium condition of moment at the rail fastening unit is thus given by

2M + kθ = 0 (5)

where M is the bending moment acting on the rail cross-section at both sides of the rail

fastener, and θ is the angle of rotation at the rail support. In principle, if the bending

moment M is measured by a strain gauge, the rotational stiffness k can be evaluated

from Equation (5). However, in an actual track with a rail fastener, it is impossible to

attach a strain gauge to a rail fastening position. Therefore, the equilibrium condition

given by Equation (5) is unavailable to identify k. To cope with this restriction, in

this study the bending moment at a different position is employed as the measurement

data. Notice that in this case the simple relation of Equation (5) is no longer applica-

ble. Nevertheless, the bending moment will depend on the stiffness k. Therefore, the

following physical quantity m1 depending on k can be used as a target function for

the identification,

m1 =
M(x)

θ
(6)

where M(x) is the bending moment at a certain position x.

The rotation angle can be obtained by numerical differentiation of vertical acceler-

ations observed at two neighboring points of the rail support. In this case its accuracy

is depends on the measurement accuracy of the accelerometer as a(x) in Equation (7).
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4.2 Physical quantity given by relative acceleration ratio

The rail deflection of the pinned–pinned mode will depend on the rotational stiffness

k as illustrated in Figure 6. Therefore, as another target function m2, we consider a

sleeper

rail

k=0

k>0

Figure 6: Influence of rotational stiffness on mode shape

representative value of the mode shape that depends on the rotational stiffness. That is,

the ratio of the vertical acceleration of the rail at the midspan to that at other position

is employed as m2. In the actual measurement, the vertical acceleration at the rail

support excited by the impact loading will affect the vertical acceleration component.

Therefore, in order to elliminate this influence, relative acceleration to the one at the

rail fastening position are used as

m2 =
|amid − af |
|a(x)− af | (7)

where, a(x), af and amid are vertical accelerations at a certain position x, the rail

fastener and the midspan, respectively (Figure 7). | · | stands for the Fourier amplitude

corresponding to the pinned–pinned resonance component.

sleeper

rail

amida(x)af

Figure 7: Measuring positions of acceleration

4.3 Physical quantity given by ratio of bending moment at midspan
to relative acceleration

From numerical experiments, it was found that the absolute value of the bending mo-

ment at midspan is about two times larger than the one at the rail fastening position.
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Hence, if the measuring position is located at this portion, the relative error of mea-

surement can be mininized. Therefore, as the third candidate for the physical quantity,

the following function m3 is also employed

m3 =
Mmid

|a(x)− af | (8)

where Mmid is the bending moment of the rail at the midspan.

4.4 Identification of k and N

The objective function for each mi is given by

Ji = (mi − m̄i)
2 (i = 1, 2, 3) (9)

where m̄i is the measurement value corresponding to mi. Since m̄i is the quantity

relating to the pinned–pinned mode, the acceleration component is to be obtained

from the Fourier spectrum of the measurement data. Through various studies, we

found that, fortunately, the influence of the axial load N on mi’s is negligible. Since,

in this case, the objective function Ji depends only on the rotational stiffness k, this

unknown value can be determined irespective of N . Although the rotational stiffness

which minimizes the objective function Ji can be found by scanning its value in an

interval, in this study this unknown is searched by means of the sensitivity analysis.

Once this value is obtained, the resonant frequency of uncompressed rail f0 can be

determined from the relationship between k and f0 as shown in Figure 8. It enables

us to attain the relationship between the resonant frequency f and the axial load N .

The axial load N can then be obtained from f as depicted in Figure 9. Notice that, the

slope of the f −N relation can be obtained a priori from the theoretical dependency

of the natural frequency of the pinned–pinned mode on the axial load.

This procedure is summarized as follows :

a) Measure f and mi. mi is calculated based on the resonance mode obtained from

Fourier amplitude.

b) Identify k, so that it can minimize the objective function Ji. It is achieved through

the eigenmode analysis.

c) Evaluate f0 from k (Figure 7). f0 corresponding to the identified k is obtained by

the eigenvalue analysis.

d) Evaluate N from the f − N relation (Figure 8). The slope of the f − N line is

obtained by the eigenmode analysis. The resonant frequency for uncompressed

rail f0 has been determined in c), while f has been obtained in a).
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Figure 8: Evaluation of resonant frequency (f0) based on the value of rotational stiff-

ness of rail pad (k)

f0

measured value of 

N

f
the resonance frequency

Figure 9: Evaluation of axial load (N ) based on the measurement value of resonant

frequency (f ) using the slope of the f −N relation, which can be obtained

a priori from the theoretical dependency of the natural frequency of the

pinned-pinned mode on the axial load

5 Case study

5.1 Identification of k and N with J1

The influences of measurement position x of the bending moment M(x) (strain) on

the identification accuracy of k and N are shown in Figure 10 for the objective func-

tion J1 given by m1. The initial value of k in the identification calculation is set to
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Figure 10: Influence of measurement position of bending moment M(x) on identifi-

cation error of rotational stiffness (k) and axial load (N ). Unknowns are

identified with J1

4.85(MN·m/rad), and the correct value is k=5.21(MN·m/rad), with the axial load of

N=10×104(N). The sleeper spacing is set to 0.57m. Other track conditions are iden-

tical to those in Section 2.

The measurement position nearest to the fastener (0.095m) provides the best accu-

racy for the identification. Even for the true value of m1, the identification of k has

some error. As mentioned above, in general, it is expected that the increase of the ro-

tational stiffness k will lead to the decrease of the rotation angle and the amplification

of the bending moment at the fastener. Whereas the opposite result was obtained from

the pinned–pinned mode analysis, i.e. the higher the stiffness, the larger the rotation

angle. Although the cause of this tendency is not clear, the time-domain track vibra-

tion analysis which was performed as the simulation of measurement process showed

similar results to the mode analysis.

5.2 Identification of k and N with J2

The influences of the measurement position of vertical acceleration on the identifica-

tion accuracy of k and N are shown in Figure 11 for the objective function J2 given

by m2. The initial and true values of k and axial load are the same as for J1.

The highest accuracy of the identification was obtained for the measurement at

0.111m from the fastener. Notice that rather large error is observed at around 0.06m
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Figure 11: Influence of measurement position of vertical acceleration a(x) on identi-

fication error of rotational stiffness (k) and axial load (N ). Unknowns are

identified with J2

from the center of the rail support. This deterioration will have relation to the fact that

rather large bending stiffness due to the existence of the rail fastener is considered in

beam elements adjacent to the rail fastening point.

5.3 Identification of k and N with J3

The influences of the measurement position of vertical acceleration on the identifica-

tion accuracy of k and N are shown in Figure 12 for the objective function J3 given

by m3. The initial and true values of k and axial load are the same as for J1.

It is found that the identification error is independent of the measurement position

of vertical acceleration. However, the largest error is obtained for the present identifi-

cation in the three cases.

5.4 Evaluation error of axial force caused by measurement error
of m′

is

In order to investigate the influence of measurement error of each quantity mi on the

estimation of axial force, we calculate the variance of N caused by the change in

mi. Here, based on the results shown in Sections 5.1, 5.2 and 5.3, the measurement

position for each mi is set so that the best performance can be attained. That is, m′
is
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Figure 12: Influence of measurement position of vertical acceleration a(x) on identi-

fication error of rotational stiffness (k) and axial load (N ). Unknowns are

identified with J3

are given by

m′
1 =

M(0.095)

θ
(10)

m′
2 =

|amid − af |
|a(0.111)− af | (11)

m′
3 =

Mmid

|a(0.016)− af | (12)

where ( )′ stands for the best measurement quantity. M(0.095) is the bending moment

of the rail at the distance of 0.095m from the rail fastener, and a(0.111) and a(0.016)

are the vertical accelerations at 0.111m and 0.016m from the rail fastener, respectively.

Variances of N (ΔN ) and k (Δk) are given as

ΔN =
∂N

∂k
Δk (13)

Δk =
∂k

∂m′Δm′ (14)

Applying the chain rule to Eqs.(13) and (14), we can obtain the following relation,

ΔN =
∂N

∂k

∂k

∂m′ ·m′ · α (15)

Influence of Thermal Dependency of Pad Stiffness 37



where α is the relative change of m′ defined by

α =
Δm′

m′ (16)

From Equations (15) and (16), we can evaluate ΔN with respect to a certain relative

accuracy α for each measurement quantity. The sensitivity of N to k and that of k to

mi are summarized in Table 2 for m′
i(i = 1, 2, 3). The values of m′

i shown in this table

are obtained by numerical experiment. ΔN for α=1% is also shown in the table. It

can be found that the identification with m′
1 has the best performance. However, even

in this case, the measurement with error of about 0.1% or less is required for m′
1 to

assure the identification accuracy of ±50kN. This condition seems to be rather severe

requirement. In order to satisfy this error tolerance, some measurement technique will

be needed.

measurement ∂k/∂m′ ∂N/∂k m′
i ΔN (kN)

position(m) (rad/m)

m′
1 0.095 -5.564(-) 6878164(N·m/rad) -4.3×102

m′
2 0.111 1.081×109(N·m/rad) 1.12 2.0701(-) 2.5×104

m′
3 0.016 -3.228×107(m/rad·s2) 19.7933(N·s2) -7.2×103

Table 2: Influence of measurement error of physical quantity mi on evaluation error

of axial force

5.5 Computational example

In the following, application of the proposed method is demonstrated through a nu-

merical simulation. The track model discussed in this section is considered, i.e.

k=5.21MN·m/rad. The rail axial load is evaluated based on m
′
1 for the true value

of N =200MN. The unit impact force shown in Figure 2 is applied at the central

midspan of the track model. The response in time-domain and its Fourier amplitude

are shown in Figures 13 and 14 for the bending moment.

The measurement value m
′
1=5.84MN·m/rad is given by the ratio of Fourier ampli-

tudes of the bending moment MR to the angle of rotation θR obtained for the resonance

component. The relation between m
′
1 and k obtained by the eigenmode analyses is

shown in Figure 15 to this problem. Notice that k=4.94MN·m/rad is identified based

on the objective function J1. This value has error of about 5% for the true value

k=5.21(MN·m/rad). Once k has been evaluated, f0=1054.1Hz is then obtained from

k− f0 curve as shown in Figure 16. Finally, the axial load N is evaluated from f −N
relation as shown in Figure 17. Here, the measurement value of resonant frequency

f=1054.7Hz is substituted into this relation. Although the rotational stiffness k can be

identified with rather good accuracy, since the slope of f − N relation is very steep,

the small discrepancy in f0 leads to large error of about 300kN. It should be bear in
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Figure 13: Time-domain response of bending moment of rail at 0.095m from the fas-

tener

Figure 14: Fourier amplitude of bending moment at 0.095m from the fastener.

mind that any disturbances such as signal noise and inhomogeneity in track are not

considered in this analysis. Therefore, the site measurement will suffer larger deteri-

oration than this numerical example. As mentioned in Section 5.4, in order to assure

the required accuracy, further improvement is needed. As shown in Table 2, the iden-

tification with J2 or J3 is more sensitive to the measurement error than J1. Because of

this, the estimation error becomes larger than 1 MN.
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Figure 15: Relation between m
′
1 and rotational stiffness k

Figure 16: Evaluation of resonant frequency f0 of uncompressed rail from rotational

stiffness k
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Figure 17: Evaluation of rail axial load N from resonant frequency f

6 Conclusions

Measurement of rail axial force by the vibration method has been discussed. In or-

der to reproduce the sensitivity of the pinned–pinned resonant frequency to the axial

force, which is observed in a real track, the thermal dependency of the rotational stiff-

ness of rail pad was considered. Through numerical experiments, it was found that

the influence of the rotational stiffness on the resonant frequency is significant. This

result also reveals that the thermal dependency of pad stiffness dominates the apparent

relationship between the axial load and the resonant frequency. However, in general,

it will not be easy to take into account this effect in a numerical model. To solve

this difficulty, in this study the identification of the equivalent rotational stiffness at

the rail support was attempted. Once the temporal rotational stiffness is obtained, the

axial load can be converted from the resonant frequency using the theoretical relation

between them. For this purpose, several quantities reflecting the rotational stiffness

were employed as measurement data. Numerical results showed that the quantity de-

fined by the ratio of bending moment to rotation angle of rail measured around the rail

support has the best performance. However, even in this case, the measurement with

error of about 0.1% is required to assure the identification accuracy of ±50kN. This

condition seems to be rather severe requirement.

Although, in this paper, the estimation of equivalent rotational stiffness is applied

only to the nearest sleeper supports, the uncertainty of other supports may be inneg-

ligible. Besides, in general, the resonant frequency of the pinned–pinned mode will

be affected by the randomness in sleeper spacing [17]. From comparison between the
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site experimental and numerical results in [23], it can also be deduced that the varia-

tion of axial load in a range of about 50 sleeper bays or shorter affects the evaluation.

Therefore, many obstacles which should be overcome are still left. As a countermea-

sure, exclusion of track conditions such as the pad stiffness and sleeper spacing by

restricting both ends of an unfastened rail region is under examination.
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