
Abstract

We consider geometric multigrid solvers for linear systems stemming from the fi-
nite element discretisation of partial differential equations on unstructured grids. Our
implementation technique reduces the complete solver to sequences of sparse matrix-
vector multiplications and is thus well-suited for both GPUs and multicore CPUs. In
particular, our implementation can handle several low- and high-order finite element
spaces in 2D and 3D, while only the sparse matrix-vector kernel needs to receive sig-
nificant tuning. For several benchmark problems, we achieve close to an order of
magnitude speedup of a single GPU over multithreaded CPU code.

Keywords: GPGPU, unstructured grids, multigrid solvers, sparse matrices, finite ele-
ments.

1 Motivation and Introduction

Over the past several years, graphics processors (GPUs) have made the transition
from an obscure (outside the domain of computer graphics, naturally) co-processor
architecture to a valuable and widely accepted general purpose computing resource,
both on standalone workstations and in large-scale HPC installations. For instance,
the current (November 2010) leading machine in the TOP500 list of supercomputers,
China’s Tianhe-1A, derives its computational (2.5 PFLOP/s) and energy (4 MW) effi-
ciency from employing more than 7 000 NVIDIA Fermi GPUs alongside its more than
14 000 Intel Nehalem quadcore CPUs. Despite significant improvements in compiler
and tool-chain support, efficient GPU implementations are still challenging due to the
fundamental architectural differences.
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1.1 Current State of GPU Computing Research

The main reason why GPUs excel at many HPC workloads that provide ample par-
allelism is that their design is fundamentally different from commodity CPU archi-
tectures: Instead of minimising the latency of a single task, they maximise the over-
all throughput of a large set of tasks and consequently, the chip’s ratio of functional
units to control logic is much more favourable. For memory-bound problems, the
GPU boards’ more hard-wired memory lanes allow for a higher signal quality, and
thus more aggregated memory bandwidth. We refer to a recent article by Garland
and Kirk [1] for technical details and a concise description of the hardware-software
model of throughput-oriented computing.

On the software and, more importantly in the scope of this paper, the algorithmic
and data structure side, a lot of research efforts have been conducted. At first, the pri-
mary focus has been on re-designing implementations of single applications: As more
and more application-specific success stories were told, more and more application
scientists, in particular those with generally insatiable computational requirements,
picked up on the trend and re-designed their codes to report significant improvements
in the computational throughput (‘time to solution’) and energy efficiency. Some note-
worthy examples include the coupling of real-time rendering with physics simulation
for computer graphics and feature film, molecular dynamics simulations and medical
imaging, to name just a few. Owens et al. and Garland et al. present surveys of such
exemplary applications [2, 3]. Simultaneously, research into the parallelisation of fun-
damental computing primitives and data structures that are applicable for a wide range
of applications has been intensified, and many (from the point of the average compu-
tational scientist, half-forgotten) techniques for inherently sequential operations and
data access patterns have been re-discovered and re-evaluated for the new fine-grained
parallel GPU architecture. A prominent example is the ‘scan’ primitive (parallel pre-
fix sum), a technique that is not necessary in sequential code but which lies at the
core of many building blocks like sparse matrix-vector multiplication (SpMV) (see
Section 1.4), sorting and searching, solving recurrences etc. [4]. Similarly, both AMD
and NVIDIA ship libraries for Fast-Fourier-Transformations and (dense) BLAS-like
operations with their GPU computing toolkits, which are frequently updated with al-
gorithmic and implementational improvements from the scientific community. Sparse
(and of lesser interest in the scope of this paper, dense) linear system solvers have also
received significant attention (see Section 1.2).

We are convinced that the latter category constitutes the more important conse-
quence of the surge of GPU computing over the past several years: GPUs have pushed
forward the fundamental paradigm shift towards exploiting on-chip fine-grained par-
allelism. This holds particularly true for application domains where previously, se-
quential approaches usually sufficed. This paper is thus not concerned with a single
application but with an implementation technique of an important algorithm, (geome-
tric) multigrid solvers for sparse linear systems, that can be applied in many different
scenarios. Before we outline our approach in Section 1.5, we first discuss related work
and the current state of the art in the context of this paper in the next three sub-sections.



1.2 Geometric and Algebraic Multigrid Methods for PDEs

Multigrid (MG) is the preferred numerical technique for solving large sparse linear
systems of equations, in particular for those arising in the finite element (FE), finite
difference and finite volume discretisation of PDEs where the condition number of the
system matrix deteriorates with the mesh width h and thus increasing problem size: In
contrast to other iterative methods, optimal multigrid solvers converge independently
of the grid width h for a given problem with increasing refinement (decreasing h), and
require only a linear amount of operations in the number of unknowns.

The theoretical foundation of multigrid methods is that high-frequency error com-
ponents can be eliminated quickly using elementary iterative methods (like Jacobi or
Gauß-Seidel), while low-frequency error components are more persistent. However,
low-frequency errors on a fine mesh resolution (the so-called multigrid level) appear
as high-frequency errors on a coarser mesh. Multigrid is thus an inherently recursive
defect correction method acting on a hierarchy of different mesh resolutions: Starting
on a fine mesh, the error is smoothed with a few iterations of an elementary iterative
scheme. Then, the resulting defect is restricted to a coarser mesh, where the algo-
rithm is recursively applied. At the coarsest mesh, the so-called coarse grid problem
is solved exactly, and the resulting defect correction is prolongated to the next finer
level where any remaining high-frequency errors are eliminated by post-smoothing.
One such solver iteration is called a multigrid cycle, and different cycle types exist,
depending on the order in which different mesh resolutions are traversed. It is worth
noting that multigrid can be formulated non-recursively to improve the efficiency of a
concrete implementation. For details, we refer to standard multigrid textbooks [5].

Two fundamentally different multigrid schemes exist: In algebraic multigrid (AMG),
the starting point is the discretised problem on the finest mesh, and coarser represen-
tations are constructed algebraically from the system matrix. In geometric multigrid
which we employ throughout this paper, the starting point is the coarse mesh problem,
which is then refined into a mesh hierarchy according to certain rules. For instance,
in the Qi finite element spaces considered in this paper, each quadrilateral element
at a given level is subdivided conformingly into four new quadrilaterals. However,
geometric multigrid is not limited to such conforming subdivisions, extensions exist
for hanging nodes during refinement, and for nonconforming (non-nested) mesh hi-
erarchies. Even though AMG has beneficial black-box properties, we are convinced
that geometric multigrid combined with finite element approaches (FE-GMG) is ac-
tually more advantageous from a numerical point of view. By including the under-
lying discretisation in the design of MG components, the numerical properties of the
solvers can be optimised significantly and made much more robust, which outweighs
the black-box character of AMG: The two components to target in this optimisation
are the smoothing and grid transfer operations. For example, AMG can only identify
grid anisotropies through strongly varying coefficients in the system matrix and even-
tually react with techniques like semi-coarsening, while the combined FE-GMG can
employ true element evaluations to generate optimal (in terms of the approximation
error) grid transfer operations, see Section 2.1. As a consequence, superconvergence



effects can be achieved by combining geometric MG with higher-order finite element
discretisations [6] in contrast to more black-box AMG techniques.

1.3 Multigrid Methods on GPUs

On GPUs, multigrid methods have only received moderate attention during the past
several years, at least compared to the total number of papers concerned with sparse
linear system solvers or finite element/volume/difference discretisations. The first
to implement multigrid solvers for flow simulation in computer graphics entirely on
GPUs were Bolz et al. and Goodnight et al. [7, 8]. They used GMG/AMG for finite-
difference type discretisations on structured grids (in our opinion, AMG anf GMG es-
sentially coincide for fixed-stencil multigrid, i. e., structured power-of-two grids and
discretisations where unknowns coincide with grid points). More recent publications
presenting applications that require multigrid solvers are supersonic flows (AMG,
unstructured grids [9]), (interactive) flow simulations for feature film (AMG/GMG,
structured [10, 11]), out-of core multigrid for gigapixel image stitching (GMG/AMG,
structured [12]), image denoising and optical flow (GMG/AMG, structured [13]),
power grid analysis (AMG, structured/unstructured [14]) and blood flow in the hu-
man heart (AMG, unstructured [15]). This last paper is at first sight similar in spirit
to our work, since the authors also reduce (almost) the entire multigrid algorithm to
sequences of sparse matrix-vector multiplications. The important difference (besides
AMG vs. GMG) is that they use a fixed, problem-specific data layout in their SpMV
implementation whereas we go further and, e. g., use layouts that have been shown
to deliver superior performance for a wide range of non-zero patterns, see also Sec-
tion 1.5. In summary, we can say that previous publications describing multigrid on
GPUs either target algebraic multigrid, or are limited to structured grid geometric
multigrid and low-order discretisations. To the best of our knowledge, we are the first
to present geometric MG for high-order FEM on GPUs.

Finally, we want to point out that ‘multigrid’ alone is not a good indicator that
state-of-the-art numerics is being used (even though it is certainly superior to Krylov
subspace methods). The reason for this is that the convergence of geometric and
algebraic multigrid alike strongly depends on the quality of the smoothing operation.
‘Standard’ smoothing operators like Jacobi and Gauß-Seidel exhibit severe difficulties
in the case of nonlinearities and anisotropic meshes and operators. Commonly known,
numerically favourable and ‘strong’ smoothers like ILU(k) typically exhibit highly
recursive, inherently sequential data dependencies. To the best of our knowledge, no
such method has been presented on GPUs so far, at least not in the unstructured case.
Some of the authors of this paper have previously worked on geometric multigrid
solvers equipped with strong smoothers that exploit locally structured grids [16, 17].
Throughout this paper, we employ simple Jacobi smoothing and thus only tackle one
of the two components in unstructured grid FE-GMG that are required for numeri-
cally and computationally optimised solvers on GPUs. In Section 5 we briefly discuss
approaches to tackle the second open problem, namely stronger smoothers for un-



structured grids. Since the numerical properties of stronger smoothers may depend
on the numbering scheme of the unknowns, our evaluation of the impact of number-
ing schemes only highlights architectural and hardware influence. This separation of
hardware and numerical aspects is only possible with simple smoothers.

1.4 Sparse Matrix-Vector Multiplication

The key component in our GPU implementation of multigrid for different finite ele-
ment discretisations is an efficient parallel sparse matrix-vector multiplication kernel.
Implementations for multicore CPUs and the Cell BE processor, including a discus-
sion of better data layouts compared to the ‘standard’ compressed sparse row (CSR)
format, have been presented by Williams et al. and Goumas et al. [18, 19]. Buatois
et al. [20] were the first to discuss the performance of SpMV on modern GPUs, they
employed a block-CSR format which exploits locally dense sub-blocks in the matrix to
improve efficiency. Bell and Garland [21] and Baskaran and Bordawekar [22] evalu-
ated different storage formats like the ELLPACK/ITPACK format [23], the coordinate
format COO, and vector-CSR formats. They concluded that ELLPACK is the best-
suited general purpose format, i. e., it delivers consistently high performance for a
wide range of sparsity patterns. This work has recently been extended by Vazquez et
al. [24] to a new format, ELLPACK-R, which stores an additional array to allow for
a more efficient implementation. They propose an entire family of implementations
based on the number T of threads assigned to each matrix row, called ELLR-T. This
parameter allows for applying autotuning techniques, and to the best of our knowl-
edge, this is the fastest currently available general purpose SpMV implementation on
GPUs. Our implementation is based on the freely available code by Bell and Gar-
land, but has been extended to the ELLPACK-R format and thus implements some of
the improvements suggested by Vazquez et al. Finally, we refer to a book chapter by
Williams et al. [25] for a survey on the state of the art of SpMV on multicore CPUs,
GPUs and the Cell BE processor.

1.5 Paper Contribution and Overview

In this paper, we evaluate the performance of an implementation technique for FE-
GMG (finite element geometric multigrid) solvers for PDE problems discretised on
unstructured grids. Our target architectures are medium-grained parallel multicore
CPUs and fine-grained (manycore) GPUs. At this point, we focus entirely on the
solver performance, evaluating it for different unstructured grids and finite element
spaces. This is justified since in many practical scenarios, the linear solver often
dominates the total execution time.

The solver is implemented (almost) entirely as sequences of sparse matrix-vector
multiplications. This admittedly simple idea has surprisingly many beneficial proper-
ties: The multigrid solver needs to be implemented only once, and is completely obliv-
ious of the underlying finite element space, and even oblivious of the dimension of the



computational domain (2D, 3D). Furthermore, our implementation replaces many spe-
cialised kernels (for which the development of fine-grained parallelisation techniques
has only very recently begun, see Section 5) with one central, well-understood and
well-optimised parallel kernel, which is favourable in terms of software maintainabil-
ity and the rapid adoption of GPUs in multigrid and finite element codes.

It should be noted that our approach suffers almost no performance penalty for un-
structured grids, compared to implementing prolongation and restriction specifically
tailored to the underlying finite element space. Of course, the underlying discreti-
sation can only be hidden from the solver if other stages of the solution process are
more dependent on the discretisation. Since the system matrices and the right hand
sides have to be assembled prior to executing the linear solver anyway, we argue that
the assembly of the grid transfer matrices can be realised in this stage as well at mini-
mum additional cost.

The remainder of this paper is structured as follows: In Section 1.1, we have argued
that GPU computing has evolved into an established technique. We therefore refrain
from presenting yet another primer of the GPU programming model, and instead re-
fer the interested reader to the above mentioned survey articles and the references
therein [1, 2, 3]. In Section 2 we provide the necessary mathematical background of
our approach, in particular on how to efficiently map grid transfer operations to sparse
matrix-vector multiplications. Section 3 covers implementational details, and in Sec-
tion 4 we present numerical experiments highlighting the benefits of our approach and
the speedup obtained by a GPU over carefully tuned multithreaded CPU code. Here,
we also analyse the importance of choosing a suitable ordering scheme for the un-
knowns, and its consequences for solver performance. We conclude with avenues for
future work in Section 5.

2 Multigrid Solver Components

2.1 Geometric Multigrid as a Sequence of SpMV

Geometric multigrid algorithms comprise the following components, which in our
implementation are mapped to individual kernels. We refer to standard multigrid text-
books for details on the control flow logic, in particular on the cycle control.

• Defect calculations are realised as a straight forward extension of sparse matrix-
vector multiplication, i. e., we do not transfer the coefficient vector back and
forth to off-chip memory, but rather fuse the SpMV and vector-vector opera-
tions into a single kernel. We implement smoothing as a short defect correction
loop, so defect calculations (and hence, SpMV) are required once in each pre-
and postsmoothing step on each level of the mesh hierarchy. As mentioned in
Section 1.3, we currently limit ourselves to simple Jacobi smoothing, which is
realised by a straight forward vector-vector operation.



• Grid transfers, i. e., prolongations and restrictions depending on the chosen fi-
nite element spaces and grid hierarchies, are written as sparse matrix-vector
multiplications, see Section 2.3. We use two different sets of matrices to avoid
having to rewrite the SpMV kernel to perform operations with the transpose of
the matrix.

• The coarse grid solver generally requires very little time, and we use a precon-
ditioned conjugate gradient solver for this task, which in turn is, once SpMV
and the BLAS-1 operations DOT and NRM2 are available, trivial to implement
on both CPUs and GPUs. Finally, the coarse grid correction after restriction is
a simple vector-vector operation for conforming grids. In the nonconforming
case, the computation of an optimal steplength parameter is in turn realised by
SpMV and few dot product operations.

From this list, it is obvious that indeed, the vast majority of arithmetic operations in
the multigrid cycle are based on our SpMV kernels, and the computational efficiency
and performance of the SpMV kernel should be transferred directly to the entire solver.
We assess this claim in Section 4.4.

2.2 Ordering Techniques for Degrees of Freedom

It is well known that even for the same finite element discretisation on the same mesh,
runtime performance may vary considerably depending on the ordering/numbering of
the degrees of freedom. For simple Jacobi smoothing, the numerical performance (rate
of convergence) is independent of the ordering, but for more advanced smoothers, the
convergence rate is influenced substantially by the underlying ordering [26]. We im-
plemented a simple preprocessing routine that allows us to convert between different
numbering schemes, and include the following five variants in our benchmark in Sec-
tion 4. This allows us to not only identify the ‘best’ ordering scheme for a given prob-
lem, but more importantly it significantly increases the range of experiments we per-
form without adding additional (semi-artificial) test geometries and coarse grids. The
analysis of the numerical impact of different numbering schemes will be addressed in
a future publication targeting stronger smoothers in our setting, see Section 5.

In two-level numbering, 2LV, the numbers of the degrees of freedom on each finer
mesh coincide with the numbers on the corresponding coarser mesh. The popular
Cuthill McKee numbering, CM, is designed to reduce the matrix’ bandwidth. In
the XYZ technique, degrees of freedom are sorted according to their spatial coordi-
nates, using the x-coordinate as leading dimension. In order to simulate fully adaptive
meshes (hence fully unstructured matrices) we employ a randomly permutated num-
bering, STO, that maximises cache miss rates. This numbering scheme is of course
artificial and only included as a worst-case reference. Finally, a hierarchical approach
HIE is used, where the degrees of freedom of cells in the fine grid are recursively
collected and numbered according to the coarse grid cells.



2.3 Grid Transfers in Multigrid

In this paper, we restrict ourselves to the case where, for d, k ≥ 1, V2h and Vh are
both conforming Qk finite element spaces [27] defined on unstructured conforming
d-dimensional hypercube grids Ω2h and Ωh, where Ωh is the grid refined from Ω2h by
subdividing each d-dimensional hypercube into 2d children. Since V2h ⊂ Vh, we can
perform a grid transfer of any u2h ∈ V2h into Vh by interpolating u2h.

In the following, we show that, if we choose the standard Lagrange bases for V2h

and Vh, the interpolation, and therefore the grid transfer, can be expressed as a sparse
matrix-vector product. We note that the same approach can be used for simplex-based
grids and the Pk family of conforming finite element discretisations.

Let ϕ
(1)
h , . . . , ϕ

(m)
h be the standard Lagrange basis of Vh, then the interpolant uh of

a u2h ∈ V2h can be calculated by evaluating u2h in the corresponding nodal points ξ
(i)
h

of ϕ
(i)
h :

uh :=
m∑

i=1

xi · ϕ(i)
h (1)

xi := u2h(ξ
(i)
h ).

Now, for a set of basis functions ϕ
(1)
2h , . . . , ϕ

(n)
2h of V2h and a u2h ∈ V2h given by

u2h =
n∑

j=1

yj · ϕ(j)
2h ,

with a coefficient vector y ∈ Rn, we can express (1) as

uh :=
m∑

i=1

xi · ϕ(i)
h

x := P h
2h · y (2)

where the m× n prolongation matrix P h
2h is given by

(P h
2h)ij = ϕ

(j)
2h (ξ

(i)
h ). (3)

Additionally, if ϕ
(1)
2h , . . . , ϕ

(n)
2h is the standard Lagrange basis, it holds that for any

ξ ∈ Ω: ∣∣∣{ ϕ
(j)
2h

∣∣ ϕ
(j)
2h (ξ) 6= 0; 1 ≤ j ≤ n

}∣∣∣ ≤ (k + 1)d,

so the prolongation matrix (3) has at most (k + 1)d non-zero entries per row and the
grid transfer can be realised efficiently as the sparse matrix-vector product (2).

The matrix Ah representing the discrete Laplace operator on Vh has at least (k +
1)d non-zero entries per row while having the same number of rows as P h

2h, so the
additional amount of memory necessary to store the prolongation matrix P h

2h and,



analogously the restriction matrix
(
P h

2h

)> is bounded by the memory requirements
of Ah. This is just another example of trying to achieve better performance at the
cost of moderately increased memory requirements, since the alternative approach
to implement grid transfers directly (i. e., without full assembly of the prolongation
matrices) yields no performance improvement in our experience.

2.3.1 Example: Prolongation Matrix for 2D Q1

In the case where Vh and V2h are 2D Q1 discretisations, the nodal points ξ
(i)
h of Vh

coincide with the vertices v
(i)
h of the grid Ωh. Each vertex v

(i)
h of Ωh corresponds

to either a vertex of Ω2h or to the midpoint of an edge or a quadrilateral of Ω2h.
Let nv

2h denote the total number of vertices, ne
2h the number of edges and nq

2h the
number of quadrilaterals of Ω2h, then the total number of vertices of Ωh is given as
nv

h = nv
2h + ne

2h + nq
2h. By choosing an appropriate 2-level-numbering scheme of the

vertices v
(i)
h of Ωh (see Section 2.2), and therefore the basis functions ϕ

(i)
h of Vh, the

nv
h × nv

2h prolongation matrix P h
2h has the block structure

P h
2h =

Pv

Pe

Pq

 ,

where Pv is an nv
2h × nv

2h identity matrix, Pe is an ne
2h × nv

2h and Pq an ne
2h × nv

2h

matrix. Each row i of Pe represents the vertex of the grid Ωh which corresponds to
the midpoint of edge i of Ω2h. Therefore, each row of Pe has exactly two non-zero
entries, each storing the value 1

2
, where the column indices correspond to the edge’s

corner vertex indices. In analogy to Pe, Pq represents the vertices corresponding to
quadrilateral midpoints of Ω2h, so each row of Pq has four non-zero entries storing
the value 1

4
, where the column indices correspond to the indices of the quadrilateral’s

corner vertices.

3 Implementation for Multicore CPUs and GPUs

Our multigrid solver is implemented on top of our HONEI libraries [28], which pro-
vide all necessary infrastructure for parallelisation and have been extended signifi-
cantly since the original publication. HONEI abstracts from the target hardware, i. e.,
the target architecture is a template parameter: The exact same multigrid solver code
has only been implemented once, and the appropriate compute kernels for the multi-
core and the GPU implementation are inserted at compile-time. This approach makes
the code well maintainably and extendably. The GPU implementation provides sup-
port for recent NVIDIA GPUs and has been realised as a wrapper around CUDA [29].
As our solver is almost exclusively built around calls to highly efficient SpMV kernels
(see Section 2.1), it suffices to describe our approach to parallelising and tuning the
SpMV kernel.



3.1 The ELLPACK-R Format for Sparse Matrices

We do not utilise the ‘standard’ CSR format, but rather the ELLPACK-R format (an
extension to the ELLPACK/ITPACK format [23]) proposed by Vazques et al. [24], see
Section 1.4. In our experience, ELLPACK(-R) leads to significantly higher computa-
tional throughput, even for sequential code (see also Section 1.4 and 4.3).

This format stores the sparse matrix S in two arrays A and j. A stores the non-zero
entries of S in column-major order in an array of size RowCount × MaxRowSize,
where RowCount is the number of rows in S and MaxRowSize is the maximum
number of non-zero entries in any row of S: All shorter rows in the matrix A are
appropriately padded with zeros, resulting in a equal size of every row. The array j
holds the column index of every entry in A. In addition to this common ELLPACK data
structure, the ELLPACK-R format adds one additional array rl of size RowCount.
The array stores the effective count of non-zero elements on every row without the
padded zero elements. This enables an algorithm to stop computation on a row when
all non-zero elements have been processed. A small illustrative example is:

S =


1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4

 ⇒ A =


1 7 ∗
2 8 ∗
5 3 9
6 4 ∗

j =


0 1 ∗
1 2 ∗
0 2 3
1 3 ∗

rl =


2
2
3
2


3.2 Sparse Matrix-Vector Multiplication

Based on the ELLPACK-R format, the sparse matrix-vector multiplication y = Ax
can be performed by computing each entry yi of the result vector y independently:

yi =

rli∑
nz=0

Ai,nz ∗ xjnz .

In general, this results in a comparatively regular access pattern on the data of y and
A. In contrast, the access pattern on x depends highly on the non-zero structure of A.

3.2.1 GPU Implementation

The ELLPACK-R based SpMV kernel is mapped to the GPU architecture by launching
one device thread for the calculation of an entry yi. This approach has the following
advantages: The data access on the arrays three ELLPACK-R arrays and to y is fully
coalesced due to the column-major ordering used. The access to the array x can
be cached via the texture cache on the GPU to improve efficiency. On the FERMI
generation of GPUs (currently unfortunately not available to us), the device-wide L2-
cache is also well utilised. No synchronisation between threads is necessary. The
threads in one CUDA warp can not diverge because no flow instruction is used that
would cause serialisation. Every warp finishes execution directly when all non-zero



entries in its threads’ rows are completely processed. Because of this, only warps with
a high relative non-zero count in their rows execute longer compared to average warps.

3.2.2 CPU Implementation

The CPU implementation follows essentially the same lines as the GPU implementa-
tion. Instead of launching RowCount threads, we launch one thread per CPU core
available to us, resulting in a scalable implementation.

In detail, if four threads are used for the calculation, the vector y is virtually parti-
tioned in four contiguous parts. Then every thread computes the entries yi of his part
of y sequentially, but independently of the other threads. The arrays of the matrix and
the vector x stay in the shared main memory and are accessed by all threads read-only.
As outlined before, the data access pattern on the ELLPACK-R arrays and on y is very
regular, supporting the processor’s internal cache prefetching units. On the other hand,
the locality of the data access on the array x, although not predictable, utilises the
whole cache hierarchy of modern CPUs, including the last level cache, shared by all
CPU cores. The underlying multicore backend uses a static thread pool as described
by Mallach [30], which allows for fast launching and terminating of threads. Thus,
the amount of threads need not be fixed to the CPU core count but can be adapted to
varying sizes of the array x. The thread pool also ensures proper thread pinning and
memory affinity on NUMA systems.

4 Results and Performance Experiments

As motivated in Section 1.5, we concentrate on the solution stage of the FE-GMG
solver and pre-assemble all necessary matrices and vectors, including the transfer ma-
trices. Thus, only the execution time and corresponding speedups between architec-
tures and/or sorting methods are measured.

All benchmarks are performed on an Intel Core i7 920 quadcore workstation in-
cluding an NVIDIA GeForce GTX 285 GPU. The dual memory-controller design of
the i7 offers 33 GByte/s bandwidth to off-chip memory and the GTX 285 delivers 160
GByte/s, respectively. The CPU features 8 MB L3 cache shared between all cores and
256 kB L2 cache for each core, while the GPU only has 16 kB of texture cache, the
same amount as the L1 cache for each core on the CPU.

4.1 Numerical Accuracy

In all subsequent benchmarks, we made sure that all numerical results are as accurate
as if computed by the finite element package FEAT2/FEATFLOW that we used to as-
semble the matrices and vectors: The multigrid solvers exhibit the same convergence
behaviour, and the very small differences in the result vectors are due to floating point
noise since the order of operations changes in the parallel implementation.



4.2 Benchmarks and Solver Setups

In order to show that all speedups are gained mesh-independently, we employ two
different test meshes: In the CIRCLE setup, the computational domain is rectangu-
lar, enclosing an inner circle, see Figures 1 (a) and (b) which depict the geometry
and the coarse mesh of the setup. A more complex coarse mesh is used within the
BLOOD benchmark, where the domain consists of an idealised blood vessel with an
aneurysm [31], the coarse mesh is depicted in Figure 1 (c). This setup is taken from a
fluid-structure interaction benchmark, the finely resolved boundary layer is a discreti-
sation of the solid part (the blood vessel’s walls) and not part of the fluid domain. In
both cases, we solve the Poisson problem and employ Dirichlet boundary conditions
on the outer (and inner) boundaries Γ, Γ1 and Γ2, respectively:

CIRCLE:


−∆u = 1, x ∈ Ω

u = 0, x ∈ Γ1

u = 1, x ∈ Γ2

BLOOD:

{
−∆u = 0, x ∈ Ω

u = 1, x ∈ Γ

The Poisson problem is the most fundamental (elliptic) PDE. It arises for instance
in electrostatics (potential calculations), in structural mechanics (linearised elasti-
city with small deformations), and as a sub-problem in many fluid flow simulations
(Pressure-Poisson problem in operator-splitting approaches for the Navier-Stokes equa-
tions). Furthermore, the Poisson problem is a very convenient model problem not only
for elliptic PDEs since it is difficult to solve, its discrete variant can be made arbitrarily
ill-conditioned, and few problem-specific optimisations can be applied.

We configure our multigrid solver to perform a V-cycle always traversing the full
mesh hierarchy. Coarse grid problems are treated with a Conjugate Gradient solver us-
ing Jacobi preconditioning, it is configured to reduce the initial residual by two digits.
However, the smoothing parameters of the multigrid have to be configured differently
for the two problems: In order to ensure convergence with the number of iterations
not depending on the refinement level in case of the BLOOD setup, significantly more
pre- and postsmoothing steps are required and the damping parameter has to be ampli-
fied differently: We use four pre- and postsmoothing steps for the CIRCLE setup and
64 for BLOOD. The damping parameter of the Jacobi smoother is set to 0.7 and 0.5,
respectively. This is a simple consequence of the anisotropies present in the BLOOD

problem since we are currently limited to Jacobi smoothing. In other words, this prob-
lem requires a much stronger smoother and needs to be re-evaluated in future work.
All benchmarks are performed in double precision.

Table 1 contains refinement levels and numbers of degrees of freedom for the two
benchmark configurations and the two FE spaces covered in our evaluation. The max-
imum level of refinement is chosen so that the largest possible fine mesh when using
Q2 finite elements just barely fits into the 2 GB GPU memory, for the two problems
respectively.



(a) geometry of the CIRCLE
setup

(b) coarse grid of the CIRCLE
setup

(c) coarse grid of the BLOOD
setup

Figure 1: Benchmark setups CIRCLE and BLOOD

CIRCLE BLOOD
Q1 Q2 Q1 Q2

L N non-zeros N non-zeros N non-zeros N non-zeros
4 576 4552 2176 32192 15233 133890 60417 1205010
5 2176 18208 8448 128768 60417 535561 240641 4820049
6 8448 72832 33280 515072 240641 2149385 960513 19344465
7 33280 291328 132096 2078720 960513 8611849 3837953 77506641
8 132096 1172480 526336 8351744 3837953 34476041 - -
9 526336 4704256 2101248 33480704 - - - -
10 2101248 18845696 - - - - - -

Table 1: Refinement levels (L), corresponding numbers of degrees of freedom (N) and
numbers of non-zeros of system matrices

4.3 Performance of the SpMV Kernel

We first demonstrate the efficiency of the applied SpMV kernel for our modified ELL-
PACK matrix format since it is the major component of our multigrid solver. Table 2
provides MFlop/s rates for the singlethreaded CPU (SSE) version, the multicore im-
plementation using an optimal number of four threads, and the CUDA kernel. The
matrices are taken from the linear systems of the CIRCLE setup on the various levels
of refinement. The tables also show the numbers of non-zero elements on each level.
Multicore speedups are calculated vs. the singlecore variant, and GPU speedups are
calculated vs. the multicore variant. We thus present a very ‘honest’ full ‘chip vs.
chip’ comparison.

In general, the SSE backend performs with 500 MFlop/s at most, which is in line
with recent results for optimised SpMV kernels on commodity CPUs [18]. However,
the performance is severely dropping when using the STO numbering technique, as
expected. Using the full multicore capacity of the i7 system, the performance level
is virtually doubled in average (sometimes tripled), which clearly demonstrates that
the SpMV kernel scales rather with the number of memory controllers than with the
number of CPU cores for sufficiently large input matrices. As a side note, we have
also executed all tests with eight CPU threads via HyperThreading, and found that
the performance is surprisingly on par with employing four native threads: This again



Q1 Q2
L SSE MCSSE speedup CUDA speedup SSE MCSSE speedup CUDA speedup
6 - - - - - 492 894 1.82 7985 8.93
7 870.81 2445.06 2.81 7441.65 3.04 467 612 1.31 8527 13.93
8 672.14 1163.98 1.73 8411.42 7.23 358 569 1.59 7942 13.96
9 506.85 988.19 1.95 7928.9 8.02 323 528 1.63 7680 14.55
10 426.81 855.99 2.01 7925.34 9.26 - - - - -
6 - - - - - 479 933 1.95 6168 6.61
7 790 2897 3.67 7247 2.5 458 883 1.93 7035 7.97
8 685 1268 1.85 8459 6.67 289 802 2.78 6470 8.07
9 445 1187 2.67 7539 6.35 262 743 2.84 6288 8.46
10 399 1120 2.81 7314 6.53 - - - - -
6 - - - - - 500 1096 2.19 6706 6.12
7 842 3299 3.92 8506 2.58 491 950 1.93 7677 8.08
8 760 1344 1.77 10403 7.74 334 897 2.69 7911 8.82
9 504 1369 2.72 11007 8.04 330 836 2.53 8074 9.66
10 494 1372 2.78 11176 8.15 - - - - -
6 - - - - - 416 841 2.02 5057 6.01
7 697 2048 2.94 5880 2.87 346 787 2.27 3820 4.85
8 497 981 1.97 4257 4.34 244 590 2.42 2468 4.18
9 348 843 2.42 2628 3.12 160 366 2.29 1689 4.61
10 224 443 1.98 1794 4.05 - - - - -
6 - - - - - 487 911 1.87 6454 7.08
7 809 3148 3.89 8049 2.56 482 852 1.77 7465 8.76
8 738 1313 1.78 9726 7.41 300 836 2.79 7776 9.3
9 471 1345 2.86 10342 7.69 299 782 2.62 7903 10.11
10 465 1331 2.86 10553 7.93 - - - - -

Table 2: Performance of SpMV (Mflop/s) for Q1 (left) and Q2 (right). From top to
bottom: 2LV, CM, XYZ, STO and HIE numbering schemes

underlines the impact of the number of memory controllers on the Nehalem/i7 CPU
architecture. Finally, the GPU can exploit its bandwidth-advantage and provides up to
14 GFlop/s, 8 GFlop/s in general when taking STO out of the calculation, delivering
an additional speedup of eight compared to the fully exploited i7 chip. We address
the differences in performance when switching the ordering technique separately in
Section 4.5.

4.4 Performance of the Full Solver

We exemplarily provide total execution times and speedups for the multigrid solver
corresponding to the SpMV benchmarks of the CIRCLE system matrices in the last
sub-section in Table 3 and speedups only for the BLOOD setup in Table 4.

It can be seen that the speedups projected by the SpMV benchmark in Section 4.3
translate very well to the solver level in our approach. In absolute numbers, our re-
sults mean that computations consuming tens of seconds of time on a fully exploited
multicore CPU can be accomplished by the GPU in one or two seconds. Finally,
these findings are problem-independent, as the speedups are consistent between the
two problems, see Table 4 for the speedup data.

4.5 Impact of the Numbering Scheme for the Two Example Prob-
lems

With respect to the specific numbering in use, we find that a preferred order of the tech-
niques can be found independently of the hardware architecture: While STO always
performs worst, the other techniques, CM, HIE, and 2LV speed up the computations
by factors of approximately 7, 1.5 and another 1.5 respectively. The XYZ performs



Q1 Q2
L SSE MCSSE speedup CUDA speedup SSE MCSSE speedup CUDA speedup
6 - - - - - 0.6 0.53 1.14 0.16 3.31
7 0.17 0.16 1.03 0.08 2.05 2.58 2.08 1.24 0.34 6.12
8 0.75 0.62 1.2 0.14 4.34 11.99 8.65 1.39 0.91 9.51
9 3.87 2.63 1.47 0.38 7.01 56.72 33.72 1.68 3.22 10.47

10 18.46 10.02 1.84 1.27 7.92 - - - - -
6 - - - - - 0.54 0.33 1.64 0.15 2.14
7 0.2 0.62 0.32 0.14 4.43 2.39 1.36 1.76 0.33 4.13
8 1.03 0.76 1.35 0.2 3.88 14.6 6.1 2.39 0.99 6.13
9 5.79 2.87 2.02 0.52 5.52 73.99 25.57 2.89 3.8 6.72

10 27.27 12.39 2.2 1.86 6.66 - - - - -
6 - - - - - 0.47 0.31 1.52 0.14 2.23
7 0.14 0.38 0.37 0.13 2.96 2.02 1.15 1.76 0.29 3.92
8 0.75 0.58 1.29 0.15 3.86 11.31 4.59 2.47 0.79 5.8
9 4.04 2.13 1.9 0.34 6.29 47.05 20.15 2.33 2.7 7.45

10 16.96 8.14 2.08 1.07 7.64 - - - - -
6 - - - - - 3.16 1.87 1.69 0.72 2.6
7 1.16 1.3 0.89 0.48 2.72 15.68 7.35 2.13 1.94 3.79
8 6.19 4.72 1.31 1.15 4.1 82.92 36.26 2.29 8.85 4.1
9 34.83 17.02 2.05 4.85 3.51 483.92 221.8 2.18 47.02 4.72

10 204.84 107.34 1.91 25.23 4.25 - - - - -
6 - - - - - 0.55 0.43 1.28 0.16 2.72
7 0.18 0.19 0.95 0.08 2.23 2.2 1.29 1.71 0.31 4.19
8 0.87 0.68 1.28 0.17 4.02 13.62 5.77 2.36 0.86 6.7
9 4.95 2.42 2.05 0.41 5.95 63.26 23.19 2.73 2.95 7.87

10 23.05 9.79 2.36 1.3 7.55 - - - - -

Table 3: Performance of Multigrid (execution time in seconds) for Q1 (left) and Q2

(right) and the CIRCLE setup. From top to bottom: 2LV, CM, XYZ, STO and HIE
numbering schemes

speedup
Q1 Q2

numbering MCSSE CUDA MCSSE CUDA
2LV 2,16 6,65 2,3 7,4
CM 2,16 7,83 2,52 7,87
XYZ 2,19 6,81 2,05 6,38
Stoch 2,15 6,22 2,06 7,93
Hie 2,06 9,67 3,05 7,94

Table 4: multigrid speedups for largest problem size, BLOOD setup

best in all our benchmarks and delivers yet another factor of 1.5. The effect of a ran-
domly created (or - in other words - arbitrarily created) sparsity pattern seems to be
architecture-dependent: Taking a look at the speedup of one of the well-performing
orderings compared with the STO distribution, the GPU performance benefits slightly
more from a better sorting strategy than the CPU. These findings strongly underline
that the effect of renumbering degrees of freedom alone can be critical and that per-
formance can be increased up to a factor of 25 by employing reasonable orderings.

5 Conclusions and Future Work

We are convinced that the performance and speedup results we have presented are very
promising: By using an implementation technique that exploits sparse matrix-vector
multiplications whenever possible, we are the first to tackle one of the two funda-
mental problems preventing efficient, flexible and numerically highly optimised finite
element geometric multigrid solvers for PDE problems on unstructured grids. Already
at this intermediate stage, our solver is competitive for a wide range of practically rel-
evant low- and high-order finite element spaces. In particular, we have demonstrated
that the recent improvements of SpMV enable competitive implementations of multi-
grid solvers on GPUs for unstructured grids, whereas only two years ago, similar



levels of speedup have only been possible in the structured and block-structured case.
Our approach opens up three main avenues for future work that we are currently

pursuing actively: Firstly, the solver can be made more robust by enhancing it with
stronger smoothers. Several examples exist of strong smoothers whose application
can be written in the form of a sparse matrix-vector multiplication, and we postu-
late that such an addition would not result in a reduction of the speedup. The most
prominent example of such approaches are smoothers of sparse approximate inverse
(SPAI) type that have previously been demonstrated to be advantageous in geometric
multigrid settings [32] compared to using standard smoothers, but in general are not as
powerful as sequential ILU-type approaches. Closely coupled with designing stronger
parallel smoothers is the question of finding optimal ordering techniques, and we plan
to thoroughly investigate their impact. So far, their influence has been significant, but
purely hardware-induced, while then, we will have to face the added level of com-
plexity that not only the runtime, but also the numerical performance is (potentially
inversely) affected by the numbering [26].

While in many cases it is justified to focus on accelerating the linear solver alone,
simply because it often dominates the total time to solution, this approach to hybrid
CPU-GPU computing is in the long run limited in speedup due to Amdahl’s law. Con-
sequently, also the assembly process needs to be pushed to the GPU. Cecka et al. and
Komatisch et al. have recently investigated finite element assembly for unstructured
grids on GPUs [33, 34]. We are convinced that our approach to ‘pre-assemble’ the
discrete grid transfer operations can be tackled with similar techniques like the ones
suggested for assembling the system matrix and the right hand side, and in the long
run, also of smoothers like SPAI; and we currently investigate this approach.

Additionally, we plan to extend our implementation to the ELLPACK-T format (on
top of the ELLPACK-R format which we already employ) as suggested by Vazquez
et al. [24]. Obviously, we need to evaluate the performance of full 3D problems. We
also expect significantly higher performance on FERMI GPUs, NVIDIA’s most recent
architecture. Our CPU results indicate that the ELLPACK-R format is very beneficial
in terms of cache utilisation, and FERMI is the first GPU generation to include a
chip-global L2 cache.
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