
Abstract

Strength and failure of geomaterials is investigated using an extended discrete ele-

ment method (DEM). A rock material is modelled using spherical particles bonded by

breakable force elements. An inflation procedure to generate dense sphere packings

which is based on the particle’s current coordination number is proposed. The particle

bonds are enhanced by a progressive failure model that reproduces the effects of sin-

gular stress concentrations near crack tips, which are normally not present in DEM,

by successive weakening of bonds. The material model is investigated in uni- and

triaxial compression, where an efficient approach for simulation of flexible confining

is applied, and calibrated to granite yielding wide agreement in strength and failure. A

procedure to model shape and angularity of ballast particles is proposed. The strength

of ballast stones made from bonded particles is subjected to statistical evaluation and

compared to published experiments. Different measures for single particle strength

are investigated with respect to the loading state which causes failure.

Keywords: discrete element method, bonded particles, failure, strength, geomaterials,

strong rock, ballast, particle crushing.

1 Introduction

The discrete element method (DEM) can be extended to the simulation of breakable

materials by introduction of particle bonds. This approach is particularly advanta-

geous for materials such as rocks, which themselves are granular on micro-scale, since

often no adequate continuum descriptions of deformation and especially failure exist.

Furthermore, the fracture of bonded particulate matter inherently reproduces many

effects of the failure process of this kind of materials.

In this research an implementation of the DEM in the simulation package Pasi-
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modo [1] is used to study the failure of geomaterials, i.e. strong rock and ballast.

Firstly, the bonded particle model is described. As dense particle packings are required

to produce strong materials, a procedure is proposed to generate sphere packings, that

feature a significantly higher average coordination number than standard approaches.

Therefore, a particle’s current coordination number is used as a control variable for an

inflation procedure.

Then, the bonding concept and a progressive failure model based on damage ac-

cumulation are introduced. The progressive failure model reduces the strength of the

remaining bonds at particles, which have already been involved in bond breakage, in

order to promote brittle, localized fracture and reproduce the effects of singular stress

concentrations near crack tips that are intrinsically not present in DEM. The material

model is calibrated to granite by simulation of uniaxial compression tests. Strength

and failure in uniaxial and triaxial compression are investigated in detail. An efficient

model of the stress boundary condition in triaxial tests is implemented.

Finally, a procedure to extract realistically shaped angular ballast stones from the

granular solid is proposed. Using several tangent planes on ellipsoids of matching

size the angular shape of ballast particles can be reproduced reasonably well. This

novel approach allows creating breakable, irregularly shaped stones for further simu-

lative investigation. The crushing strength of stones created in this way is statistically

evaluated and failure mechanisms and measures of strength are discussed.

2 Granular Solid from Bonded Particles

The DEM was developed for the simulation of systems consisting of distinct rock

blocks [2]. Its general concept can be applied to any system of particles of arbitrary

shape, where the system behaviour is governed by the interaction of these particles on

a mesoscopic scale. Usually contact forces are obtained from penalty approaches that

avoid particle overlap. Thus, they can be, but do not need to be, based on physical

laws. A simple approach to describe the interaction force Fij in normal direction of

particles i and j is a linear spring-damper combination

Fij = kijδij + dδ̇ij. (1)

For spherical particles the overlap is related directly to the particle positions δij =
ri + rj − ||xi − xj|| and the contact force is only applied if δij > 0.

The stiffness can be calculated based on the idea of an elastic rod (Young’s modulus

E) between the centres of the particles

kij =
EAij

Lij

=
Eπr2

ij

2rij

=
π

2
Erij (2)

whose cross section Aij and length Lij depend on the average radius rij = 1

2
(ri + rj).

Thus, the idea of an elastic rod introduces some physical motivation into the penalty

approach.
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The DEM can be extended to the simulation of granular solids by introducing bi-

lateral particle bonds that generate forces even in case of negative overlap, i.e. a gap,

between two bonded particles. A granular solid is generally created by bonding ad-

jacent particles from a dense packing. Fracture and failure phenomena can be incor-

porated in these models by removal or weakening of bonds based on suitable failure

criteria. The advantage of this approach is that multiple fractures at arbitrary locations

of the solid may happen and no initiation of cracks is necessary. The crack path is

only limited by the discretization, i.e. fracture occurs on the level of bonds between

unbreakable particles. For sufficiently small particles this states no serious limitation.

Bond breakage based on the loading condition and system dynamics causes cracks to

propagate, bifurcate or coagulate.

2.1 Generation of Dense Sphere Packings

The generation of a suitable initial configuration is the first step of every DEM simu-

lation. In case of simulations dealing with bonded particles this initial configuration

is a dense packing of particles that are to be bonded. A variety of approaches exists

for the generation of such a packing, see e.g. [3] and references therein.

A homogeneous and isotropic sphere packing can be obtained by continuously re-

ducing the ratio ψ = l/2r̄, where r̄ denotes the average particle radius and l is a

characteristic length of the domain containing the particles. This can be achieved by

either compression of the volume containing the particles or inflation of the particles

inside of a fixed domain. In both cases a dilute initial configuration of non-overlapping

particles has to provided, which can be obtained by using regular lattices that might

be randomly disturbed.

Inflation schemes usually employ a radii growth rate Ṙ which is equal for all parti-

cles at one instant in time. In most general form, this scheme reads

ṙ(t)/r(t) = Ṙ(t). (3)

The normalized growth rate Ṙ might be constant or time dependent.

It is proposed, to modify this scheme by introducing a dependency of a particle’s

individual normalized growth rate on its coordination number cn

ṙ(t)/r(t) = max
(

Ṙ [1 − cn(t)/ĉn] , 0
)

, (4)

where ĉn denotes a “desired” coordination number that serves as a further control pa-

rameter for the inflation procedure. The intention of this modification is to increase

the average coordination number while keeping particle overlap small. As long as the

system is dilute, i.e. c̄n << 1, the scheme corresponds to Equation (3). When a parti-

cle’s coordination number rises, this particle’s growth rate is reduced. Hence, particles

with a smaller coordination number will grow faster than particles with a higher one.

This leads to a significantly higher average coordination number. Shrinkage of parti-

cles is prohibited, which allows for the use of a desired coordination number ĉn that is
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Figure 1: Standard and coordination number based inflation scheme with ĉn = 8

smaller than the maximal coordination numbers of all particles. This is important, as

the effect of the modified scheme decreases when ĉn is increased. In the limit case of

ĉn → ∞ Equation (4) reduces to Equation (3). On the other hand, if ĉn is chosen too

small, no sufficient compaction is achieved.

Obviously, this scheme may lead to a distortion of the particle size distribution.

The amount of distortion depends directly on ĉn. Smaller ĉn result in a stronger effect

on particle size distribution. Usually, the radii distribution is only affected slightly,

but clearly, if a well defined radii distribution after compaction is required the scheme

cannot be applied. Figure (1a) shows particle size distribution curves before and after

coordination based inflation. It can be seen, that the radii of the smaller particles are

increased more than those of the larger ones. The larger particles are likely to have a

higher number of contacts in an earlier stage of inflation due to their size, whereas the

smaller particles may grow with a higher rate. Generally, this trend increases as ĉn is

reduced. Nevertheless, the width of the distribution remains nearly unaffected.

The development of the average coordination number is compared in Figure (1b)

for the standard and modified scheme. It is apparent that from a pressure above

p ≈ 2 MPa the average coordination number is significantly higher with the modi-

fied scheme. Final values are c̄n = 6.6 for the modified and c̄n = 6.0 for the standard

scheme. The latter being the well known number for a random packing of monodis-

perse spheres. Pressure is used here as a simple measure for stored deformation energy

or average overlap of the spheres, as they are directly related by the stiffness of the

interactions. Hence, the developed coordination number based inflation scheme yields

a sphere packing with a significantly higher average coordination number.

It was realized that during inflation it might be favourable to use soft interactions of

the spheres with the boundary walls of the domain for two reasons. Firstly, packings

generated with softer walls show a higher average coordination number. Secondly,

layering of particles near the walls is reduced, as significant overlap of a number of
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particles and the walls may develop. The effect of particle layering is discussed in [4].

2.2 Bonding Concept

Particle bonds usually correspond to force laws which act in restricting at least one de-

gree of freedom of the relative motion of the bonded particles. In this study, the bonds

are limited to the normal direction, and are represented by springs that act between

the centres of the bonded particles. Shear, bending and twisting is not inhibited [5, 6].

The model used here employs either a bond or a repulsive contact interaction. The

contact force results from the bond as long as it is intact. For particles that are not or

no longer bonded a repulsive interaction is applied.

Bonds are created between particles which overlap in the very first time step, i.e.

at time t = 0. The initial length of the spring representing the bond is either based on

the positions of the particles to be bonded or on their radii

Lij =

{

||xi − xj|| for IL 0
ri + rj for IL 1,

(5)

where IL 0 and IL 1 describe two different model choices. Overlap of bonded par-

ticles is defined as the deviation of particle distance from the initial spring length

δij = Lij − ||xi − xj||. Thus, for IL 0 the material is initialized in a relaxed config-

uration, while for IL 1 internal stresses arise. As the initial overlap should be small

compared to the particle radius the initial spring lengths are approximately the same

in both cases.

The bond force is calculated as in Equation (1) where now the overlap δij may also

become negative. Bond breakage is allowed in tension and compression with different

strengths Rm,T and Rm,C , respectively. The maximal forces in a bond are thus

F̂ij,κ = Rm,κAij = Rm,κ
π

4
(ri + rj)

2 = Rm,κπr
2

ij (6)

where κ = T,C indicates the loading state tension and compression, respectively. The

breakage force thus depends on the particle radii.

2.3 Progressive failure model

As bonded particle models, in contrast to real rock, do not feature singular stress

concentrations near crack tips and instable crack propagation [7], a progressive failure

model is introduced [4, 8]. This failure model locally accumulates damage in such

a way, that the strength Rm of a bond between two particles i and j is calculated

according to

Rm(t) = R̂m

(

nc,i(t)nc,j(t)

nc,i,(0)nc,j(0)

)a

(7)

where R̂m is the bond strength in undamaged material and nc,ι, ι = i, j, is the number

of a particle’s bonds. A similar formulation that has a weaker effect can be obtained
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using the sum instead of the product of the number of bonds. Note that nc,ι(0) is the

coordination number cn,ι(0), but generally nc,ι(t) 6= cn,ι(t) as the specimen deforms

and bonds may break. The exponent a is chosen as the limited, weighted sum of the

involved particles’ number of broken bonds

a = min (α[nb,i(t) + nb,j(t)], b) , (8)

where α is a weighting factor, b denotes a maximal exponent, and the number of

broken bonds is nb,ι(t) = nc,ι(0) − nc,ι(t). Thus, breakage of a particle’s bonds will

successively reduce the strength of the remaining bonds of this particle.

The parameter α adjusts the speed of damage accumulation. Increasing its value

will reduce a particle’s remaining bonds capability of sustaining loads if few other

bonds have been broken. Thus, failure will tend to localize in earlier stages of the

damage process. The limitation b controls maximal severity of damage accumulation.

If b is chosen too high, complete disintegration may result.

This concept inverts the idea of singular stress peaks, as it reduces the material

strength near a point where a stress singularity should appear but cannot due to the

particulate nature of the material. Nevertheless, the result is comparable, as in both

cases the probability of further damage occurring near this point is increased.

Besides the progressive failure model, particle clusters are introduced in order to

generate local heterogeneity, i.e. deformation incompatibilities, while keeping on the

large scale homogeneity and isotropy. Bond stiffness and strength of particles in one

cluster are chosen differently than for particles that do not belong to the same clus-

ter or that are not part of any cluster. Unbreakable and five times stiffer inter-cluster

interactions are applied in this research. Which particles belong to one cluster is deter-

mined using a modified three-dimensional generalization of the stamp logic presented

in [9] as described in [4]. Here, about one quarter of the particles do not belong to

any cluster. Sometimes, the particle clusters are meant to resemble the grains of the

material [9, 10], but this is not intended here and would not be meaningful due to the

chosen particle sizes.

The applicable parameter values of the progressive failure model depend strongly

on the presence of clusters. With clustered specimens values of α = 1.5 and b =
4 turned out to yield a nearly complete, brittle, localized fracture without excessive

damage near the process zone.

3 Strength and Failure Analysis

The strength of the granular solid created from bonding a dense ensemble of spheres

is investigated in uniaxial and triaxial compression. Uniaxial compression serves to

adjust Young’s modulus E and unconfined compressive strength C0 to values reported

for granite. Furthermore, the failure process is investigated in detail. Triaxial com-

pression tests reveal if the material model reproduces the dependence of strength and

failure modes on the minor principle stresses as observed in experiments. Also, post-

peak behaviour and residual strength are investigated.
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3.1 Failure in Uniaxial Compression

A specimen is loaded in its axial direction by moving one of its end faces with a

constant velocity while the other face is fixed. A strain controlled loading procedure

is applied as post-peak behaviour shall be investigated. Instead of using a loading

piston to apply forces via an interaction, the boundary layer of particles is fixed to

the loading frame. This resembles an infinitely stiff testing machine. Furthermore,

load is applied more uniformly as the surface of the sphere packing might be quite

rough. Fixing the boundary particles introduces a quite pronounced end constraint, as

the particles are completely prevented from moving in lateral direction. It is shown

in [4] that the effect of this end constraint is rather small for slender specimens.

The fracturing behaviour of the bonded particle model strongly depends on the

width and especially on the shape of the particle size distribution. This is because stiff-

ness and strength in terms of force units depend on the average radius of the bonded

particles, see Equations (2) and (6), respectively. It was observed that bond failure

seems to concentrate at the large and small particles. Thus, it is expected, that increas-

ing the number of small and large particles will promote failure localization and brittle

fracture.

If the initial particle size distribution is chosen according to

r(s)/r0 = 1 + 4a(s− 0.5)(1 − |s− 0.5|), (9)

where r0 denotes the average radius, a the distribution half width and s ∈ [0, 1] is a

uniformly distributed random number, then the number of particles in a size interval

at the limits of the distribution is higher than near the average radius. Indeed, if this

particle size distribution with a = 0.25 is applied, fracture is more brittle and the

material behaviour is less plastic than in the case of a uniform distribution [4].

Stress-strain curves of a clustered specimen comprising about 1000 particles with

the progressive failure model applied are depicted in Figure (2a). Curves for both cases

of Equation (5) are shown. For IL 0 the material is initiated in a relaxed configuration,

while internal stresses are present for IL 1. The presence of internal stresses reduces

the peak strength slightly and the crack initiation stress more noticeably. The strength

of C0 ≈ 200 MPa is in agreement with values usually reported for granite [11]. In

both cases, the fracture propagation is arrested soon after peak. For IL 0 stress is

recovered, which is not the case with IL 1. A nearly complete brittle fracture follows

after this short interrupt of the failure process. Stiffness is not affected by internal

stresses. The difference in breakage strain as depicted in Figure (2a) is due to the

preload of σ(ε = 0) ≈ 50 MPa for IL 1, i.e. true breakage strain is about ε′ = 0.3 %
in both cases. This corresponds to a Young’s modulus of E ≈ 65 GPa, which is

a typical value for granite [11]. A bond Young’s modulus of Eb = 350 GPa and

tensile and compressive bond strengths of Rm,T = 845 MPa and Rm,C = 2600 MPa,

respectively, are used in order to obtain these values.

After primary fracture at peak load, stress is recovered up to about 50 MPa and

secondary fractures arise. This is due to, firstly, the fact that the specimen is not
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Figure 2: Stress-strain curves obtained in uniaxial compression from simulations and

experiments

broken completely, i.e. a small portion of its cross section remains intact. Secondly,

the crack surfaces of the two fragments are pressed against each other for continued

loading. This is observed particularly for IL 0 after ε ≈ 1.0 %.

A schematic sketch of a complete stress-strain curve for granite according to ex-

periments in [11, 12] is depicted in Figure (2b). So called class II behaviour, i.e. a

stress reversal after peak load, is commonly observed for granite. Yet, at about 60 to

80 % of peak stress strain starts to increase again. Using 25 samples [12], this was

found in experiments to happen in a very narrow range, and a second class II type

strain reversal was observed as strain had recovered to approximately breakage strain.

In strain controlled loading, which is applied in this research, the post-peak curve can

drop at most vertically, i.e. a strain reversal is not possible. Thus, it seems reasonable

to assume that (i) the true post-peak curve of the discrete element model is class II and

(ii) the arrested cracking after 20 % stress release corresponds to the experimentally

observed post-peak strain increase. Investigation of the post-peak behaviour using

e.g. lateral strain control [13] will be subject of further research.

Analysis of the bond forces reveals that vertically oriented compressive force chains

develop, which are connected by horizontal tensile links [4]. Tensile stresses are gen-

erated in a compressively loaded specimen due to the heterogeneous nature of the par-

ticle model on a meso scale. Maximal compressive bond stresses are about twice the

tensile ones. As the ratio of compressive to tensile bond strength is Rm,C/Rm,T ≈ 3,

first bond breakage is always on tensile loading. Breakage of a horizontally oriented

bond on tensile loading corresponds to the formation of a vertical, dilatational micro-

crack. This is consistent with experimental results [7, 14], where it is found that initial

cracking is parallel to the direction of maximum compression and extensile.
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Compressive bond failure always coincides with one or more immediately previous

tensile failures of other bonds of the involved particles. The progressive failure model

reduces the bond strength at particles, which have been involved in previous bond fail-

ure to values that are eventually smaller than the compressive stresses. Thus, tensile

failure is the primary mode of damage, as in experiments [7], whereas compressive

failure is a means of promoting fracture propagation and localization.

For tensile loading, the described mechanisms are not activated as the tensile bond

stresses are higher than the compressive stresses while the compressive bond strength

is higher than the tensile strength [4]. This contributes also to explain why tensile

strength is usually overestimated in Discrete Element models, see [7].

3.2 Triaxial Strength and Failure

The strength of rock depends strongly on the loading state, i.e. the presence and mag-

nitude of minor principle stresses. In experiments cylindrical samples are enclosed in

a rubber membrane and hydraulically pressurized, such that σ2 = σ3 < σ1 [15].

3.2.1 Flexible Confining in DEM

Different approaches have been proposed to model the boundary conditions in DEM

simulations of triaxial tests, see e.g. [16] and references therein. In the simpler ap-

proach one rigid wall is pressed against each sample face [10, 17]. This prohibits

localization of dilation and thus might increase confining pressure near failure zones

resulting in an overestimation of the confined compressive strength and different post

peak behaviour. Strain localization is permitted if the lateral stress is applied using a

layer of membrane particles that are individually pressurized [7, 16, 18]. The mem-

brane particles can be part of the specimen or inserted around the specimen. The

former approaches differ furthermore in identification of the boundary particles and

calculation of the corresponding external forces.

The approach proposed here unites the implementational simplicity of the rigid

walls with the permission of strain localization of particle membranes. The specimen

is enclosed in a membrane of small rigid pressure plates that are individually loaded

and free to move independently, see Figure (3a). Thus, the difficulties in calculating

corresponding forces on particles forming the membrane can be avoided, while strain

may still localize.

The side length of the pressure plates is about 2.5 particle diameters. It is found that

further reduction of plate size will not change the material response even well post-

peak. A point mass is attached to each of the pressure plates in order to permit their

individual movement. For numerical reasons, this mass is chosen to be five times the

average particle mass, i.e. approximately the mass of the covered boundary particles.

The stiffness of the interaction between particles and pressure plates is chosen as

low as possible in order to achieve a further stress homogenization and avoid loading

of single protruding particles. Therefore, the stiffness is calculated proportional to the
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(a) Confining pressure system. A point mass is

attached to each pressure plate, which is indi-

vidually loaded and free to move independent

from the others.

(b) Fractured specimen. Relative number of

broken bonds color coded. Blue means all

bonds intact, red particles are completely dis-

integrated.

Figure 3: Triaxial compression test: confining sleeve and fractured specimen

applied confining pressure. Thus, the average overlap of boundary particles and the

membrane plates is independent of the applied pressure.

3.2.2 Simulation Results

A resultant fracture in confined compression is depicted in Figure (3b). An inclined

fracture plane develops, which corresponds to the experimentally observed shear frac-

tures [11] and loci of acoustic emission as reported in [19]. Vertical branches of

the major fracture plane indicate initial splitting parallel to the direction of maxi-

mum compression as in uniaxial compression simulations and reported from exper-

iments [20]. In many simulations, first fracture localizations are near the sample sur-

face, while initial cracking is distributed through the specimen. This is in agreement

with experimental results [19, 21]. Finally an inclined fracture zone develops, where

some particles are completely disintegrated from the sample.

The development of lateral strain during the failure process is illustrated in Fig-

ure (4) for the right and centre column of pressure plates acting on the right face of the

specimen in Figure (3b). As long as the specimen is intact, lateral strain is distributed

quite homogeneously over its height. After macroscopic fracture at ε′ = 0.35 % lat-

eral strain increases strongly and localizes near the fracture plane. Application of the

confining pressure with one rigid plate per face would inhibit this localization and
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Figure 4: Localization of dilation during failure

confinement σ3 granite [11] here PFC3D [10]

1 MPa 61◦ 49◦ —

10 MPa 58◦ 31◦ 32◦

Table 1: Comparison of friction angles Φ

thus result in a locally higher confining pressure. This would affect the failure process

due to the inhomogeneous confinement and the prescription of homogeneous lateral

strain.

Stress-strain curves and corresponding failure envelops of a series of confined com-

pression tests are depicted in Figure (5). As axial deformation is inhibited by the strain

controll the application of the confining pressure causes an increase in axial stress at

the very beginning of the test. Thus, actual breakage strain increases with confining

pressure, whereas apparent breakage strain is equal for all pressures in Figure (5a).

The slope of the strength envelope in Figure (5b) can be expressed in terms of

Mohr-Coulomb friction angles [15]. In Table 1 the friction angles for two rather low

confinements are compared to experimental values [11] and results from published

3D DEM simulations [10]. While for σ3 = 1 MPa the friction angle is rather close to

the experimental one, it is significantly lower for σ3 = 10 MPa. A similar value was

found in other DEM simulations using bonded spheres. Thus, it might be suspected

that a friction angle Φ ≈ 30◦ is an inherent property of bonded spheres DEM as long

as the stress state is not explicitly considered for bond strength as in [18].

The post-peak strength can be interpreted as Griffith locus according to [11] or as

strength of the broken rock mass [22]. The former explains the repeated cracking

on continued loading with slowly decreasing “peak” stresses as especially for σ3 =
50 MPa. The latter provides the magnitude of residual strength as the fragments of

the specimen are pressed against each other. Again, for low confinement reasonable
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Figure 5: Results of a series of confined compression tests

agreement with reported values [22] is found.

In experiments [7] crack initiation was found to occur at approximately constant

deviator stresses of about 40 % of the unconfined compressive strength, i.e. σci =
0.4C0 +σ3. While the magnitude of deviator stress for crack initiation is slightly over-

estimated in simulations, the dependence on confinement is reproduced quite exactly.

4 Shape and Strength of Breakable Particle Agglom-

erates

Breakable bonded particle DEM is usually applied to problems related to single ag-

glomerates such as excavations in rock, see e.g. [10]. Applications to media com-

posed of several breakable agglomerates are up to now limited to geometrically simple

shapes like disks or spheres [23, 24]. Different approaches to create complex shaped

agglomerates have been proposed [25, 26], but they are limited to unbreakable mate-

rials as the particle arrangement is chosen according to the agglomerate geometry and

not with respect to material behaviour.

It is well known that the strength of an aggregate e.g. of ballast particles depends

strongly on the shape and especially angularity of these ballast particles. Furthermore,

breakage of ballast particles plays an important role in degradation of ballasted beds.

Thus, for numerical simulation a model is required that captures the shape as well as

the strength of single ballast particles. A method is proposed here to obtain such ag-

glomerates from a bonded particle DEM material, as described in the previous part of

this paper. This allows studying the influence of particle breakage in ballast settlement

and degradation.
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(a) Two-dimensional sketch of the ballast par-

ticle shaping approach

(b) A ballast particle

Figure 6: Comparison of the ballast shaping approach and a real ballast particle

4.1 Modelling of Ballast Particle Shape

Single ballast particles are extracted from a large sphere packing by removal of the un-

necessary particles. A method to find a mathematical description of the ballast stones

is proposed, which is based on tangent planes on ellipsoids. A two-dimensional sketch

of this procedure is given in Figure (6a). Starting point for generation of the tangent

planes are the intersection points of the ellipsoid with its semiaxes. In order to account

for the irregular shape of real stones these intersection points are moved randomly on

the surface of the ellipsoid and in normal direction. Finally, tangent planes are con-

structed in the shifted points and the stone is defined as the volume that is enclosed

by all of these planes. It is found that the double application of the procedure with six

planes on the same ellipsoid results in realistic shape and angularity. However, the use

of more tangent planes at one time would result in more rounded stones as the base

points were more uniformly distributed.

This approach is motivated from the finding that ballast stones usually feature quite

planar faces, see Figure (6b). Comparison of the sketch and the photo indicates that

the described procedure is likely to generate realistically shaped ballast stones. The

surface roughness is not explicitly accounted for as in [26], but it is assumed that

cutting through an irregular arrangement of spheres will produce a surface whose

roughness is comparable to real ballast stones. Two exemplary realizations of stones

created with the described approach are depicted in Figure (7). It is apparent that

planar faces and sharp edges are formed. The sharpness of the edges is blurred to a

small extend by model resolution, i.e. particle size. The projection of the DEM-stones

is clearly polygonal and compares well to the general shape of real stones.
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(a) Realization 1 (b) Realization 2

Figure 7: Two realizations of ballast stones. Distance from the origin (located approx-

imately at the center of the stones) color coded in order to clarify the shape.

4.2 Strength of Ballast Stones

The strength of single ballast stones whose shape is obtained from the described ap-

proach and which consist of granular solid that resembles granite is investigated by

compression between parallel platens. An extensive experimental study of the strength

of single ballast stones is presented in [27]. The strengths of six types of ballast for

various size fractions were investigated and quantified using Weibull statistics. For a

given ballast and a given size fraction, the strengths are reported to follow the Weibull

distribution reasonably well. A characteristic strength is defined as the ratio of applied

force F and the diameter d of the particle [27], i.e. platen distance at failure as

σchar = F/d2. (10)

For spherical particles loaded with small contact areas this is a measure of the tensile

stress acting in the central portion of the particle and it is obtained from elasticity

theory [28]. An average strength σ0 is defined as the value of the characteristic stress

such that 1/e ≈ 37 % of the particles survive [27].

The experimental procedure of placing a stone on the lower platen and then lower-

ing the upper one to compress it is adapted to simulative requirements. The manual

process of laying the stone down on the lower platen is replaced by gently pressing

the lower platen against the stone that is only free to rotate while translational motion

is prohibited. Thus, the stone will rotate until a stable configuration is reached. Then,

the upper platen is lowered using again a small force to determine the height of the

stone, which is not known a priori due to the irregular shape and the procedure of

placing the stone on the lower plate. Finally, a strain controlled test is performed.

As a different sphere packing was used for the generation of the stones than for the

investigation of material strength and failure, bond parameters are adjusted according
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Figure 8: Results of single particle crushing tests

to simulations of uniaxial compression tests on a representative sample of 2500 parti-

cles from this packing. This gives a bond Young’s modulus Eb = 700 GPa and tensile

and compressive strengths of Rm,T = 1300 MPa and Rm,C = 4000 MPa, respectively.

Unlike in experiments, it is possible to extract the contact area of stone and platens

in simulations. The positions of the particles contacting the platens are determined

and the smallest polygon enclosing all contact particles is calculated yielding an es-

timate of the contact area. Therefore, the contact particles themselves are discretized

by a number of points, such that they are completely included in the contact area. Fig-

ure (8a) shows a typical plot of lower and upper contact areas. Due to the procedure

similar to experiments of placing the stone between the platens, the lower contact area

is usually larger than the upper one. The average polygonal area is found from simula-

tions to be approximately twice the cross sectional area of all particles in contact with

the loading platens. The polygonal area is considered to be more relevant as the stress

is distributed to adjacent particles and spacing between contact particles is usually less

than two particle diameters. This means that it is assumed that a more homogeneous

loading state over an area corresponding to the polygon is obtained slightly below the

surface of the stone and that the loading conditions in this region are relevant for bulk

fracture. The average contact area is about 600 mm2 for stones comprising at least

500 particles, which would correspond to a contact radius of approximately 14 mm

for a circular contact area. As the diameter of the stones is about 50 mm, the contact

area is at the limit of being considered small according to [27, 28].

Four sets of twenty stones comprising different numbers of particles were tested

and subjected to a statistical analysis as described in [27]. The strengths σchar ac-

cording to Equation (10) and the contact pressures pmin and pavg are determined using

the larger and the average contact area, respectively. The average contact area is the

mean of the large and small contact area of one stone. The corresponding values are

sorted in ascending order and for each failure stress a survival probability is calculated
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N σ0 mσ R2

σ pmin,0 mp,min R2

p,min pavg,0 mp,avg R2

p,avg

300 81.45 2.43 0.97 156.83 2.32 0.93 279.14 2.85 0.97

500 70.38 2.20 0.92 181.30 2.59 0.90 251.24 3.41 0.98

700 53.36 2.66 0.93 132.71 2.93 0.81 270.16 2.82 0.90

1000 49.65 2.30 0.97 134.80 2.27 0.95 289.56 2.93 0.91

Table 2: Statistics of strength. Units of σ0 and pmin/avg,0 are MPa.

according to

Ps = 1 − k/(M + 1) (11)

where k is the rank of the stone and M the total number of samples. If Weibull

statistics applies, a plot of ln(ln(1/Ps)) against the logarithm of stress yields a straight

line, whose slope determines the Weibull modulus m, i.e. variability of strength. The

data points of a series of tests on stones with about 700 particles and lines of best

fit are plotted in Figure (8b). The average strengths and Weibull moduli as well as

coefficients of correlation R2 for tests on stones comprising different numbers N of

particles are given in Table 2. The poor correlation of pmin for N = 700 is caused

by one stone extremely strong in this particular measure. Disregarding this stone,

R2

p,min = 0.94 is obtained.

The results indicate that the behaviour of the DEM stones is not exactly Weibullian,

but reasonably close. Especially at lower strengths the data deviates from the Weibull

best fit, see Figure (8b). The shape of the plots of all measures of strength is compa-

rable. Generally, a slight curvature to the right of especially σchar and pavg, but also

pmin, is observed. This is in excellent agreement with experimental results presented

in [27]. The deviation for lower stresses is interpreted as a minimum strength, below

which the probability of failure is zero.

The magnitude of σchar is higher here than reported in experiments on granite,

but comparable to small sized granodiorite ballast [27]. Granodiorite is similar to

granite in mineralogical composition and usually assumed to be slightly weaker than

granite in terms of compressive strength. This might be due to two reasons. Firstly,

the material model used here is calibrated to give a compressive strength of C0 =
200 MPa. But in DEM tensile strength is usually overestimated [7], which is important

if the single particle crushing test evaluates in deed tensile strength. In this model

Brazilian tensile strength is TB ≈ 20 MPa, whereas for granite tensile strength is

T0 ≈ 10 MPa. Furthermore, in [27] no values for compressive strength are reported,

so that it is not clear, if the rocks tested there are as strong as assumed here. If tensile

failure were identified as the true mode of fracture, calibration could be made with

respect to tensile strength.

As mentioned above, the ratio of contact radius to stone diameter is at the limit

of what is considered small. Thus, fracture caused by tensile stresses might not be

the true mode of failure in these simulations. The values of minimal and average

contact pressure are found to be somewhat lower and higher than uniaxial compressive
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strength C0 = 200 MPa, respectively. Thus, it might be suspected, that compressive

strength and failure play a role in single particle crushing. As shown in [14, 20],

compressive failure in brittle rocks (and the DEM model) is initiated by extensile

cleavage parallel to the direction of maximum compression, which makes distinction

between compressive and tensile failure awkward.

Compressive bond failure was identified as a means of fracture propagation, see

Section 3.1 and [4], which is sensitive to loading conditions. Therefore, the ratio of

bonds failing in compression might serve as an indicator of the loading state. The

percentage of compressive bond failure is about 30 % for the single particle crushing

tests, while it is 40 % in uniaxial compression and 20 % in uniaxial tension, respec-

tively. Thus, it is concluded, that failure of the stones does not occur in purely tensile

conditions but that the compressive stress is also important.

Using spherical agglomerates, which consist of substantially more particles, might

allow investigating the influence of the contact area on strength and failure modes by

variation of platen stiffness. This is not possible for the stones with the given particle

numbers as the stone will always bed down on a quite large lower contact area and

because loading of single particles at the upper platen would not yield valid results.

The average breakage strain, i.e. the relative difference of platen distance at the

beginning and at failure, of stones consisting of at least 500 particles is approximately

4 %. In [27] average values of the initial and final platen distance are given. For

the investigated granite ballast relative differences of 3.0 %, 3.4 % and 5.6 % are

found for large, medium sized and small ballast, respectively. Slightly higher values

are reported for different granodiorite ballasts. The influence of contact stiffness in

simulations and contact surface grinding in experiments on these values is not readily

accessible. But it is estimated that, at least in simulations, the corresponding uncer-

tainty is not exceeding 0.5 %. Thus, the values of simulations compare very well to

the experiments. This gives further evidence of the sound calibration of the model and

validates the simulative setup for single particle tests.

In quasistatic DEM simulations there is no influence of specimen size on strength

unlike in reality, since the specimen can be scaled to any reasonable size without

affecting its stiffness and strength [4]. Yet, an influence of particle numbers is present

at least for small numbers. Form Table 2 the influence of particle numbers on the

different measures of strenght can be evaluated.

The characteristic strength σ0 clearly decreases with increasing particle numbersN
and it seems to converge at N = 1000. From uniaxial compression tests with varying

cross section it is concluded that at least 700 particles per loaded volume element are

required to assure discretization independent strength in the present model [4]. These

numbers are confirmed by the single stone tests with respect to σ0. As some of the

particles do not contribute to the strength in diametral loading the total number of

particles per stone has to be somewhat higher.

The minimum contact pressure pmin,0 shows no clear trend, but a possible effect is

weaker than for the characteristic strength σ0 and it seems that convergence is reached

at lower particle numbers. No dependence on particle numbers is detected for pavg,0,
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but the values fluctuate to some extend. The finding that pavg,0 > C0 is reasonable,

since this pressure acts near the loaded surfaces, and will have diminished slightly be-

low surface or in the center, where failure usually initiates. This gives further evidence

that compressive failure and strength are important in DEM simulations of single par-

ticle crushing.

5 Conclusion

A bonded particle model was formulated and successfully calibrated to reproduce

strength and failure properties of granite in uni- and triaxial compression. The mate-

rial results from introduction of breakable bonds between adjacent particles of a dense

packing. Highly dense sphere packings are generated with an inflation scheme that

uses a particle’s coordination number to control its growth rate. Particle bonds that re-

strict the relative motion in normal direction and may fail in tension and compression

are applied. As in bonded particle materials no singular stress concentrations arise [7],

a progressive failure model is introduced. The progressive failure model locally ac-

cumulates damage and successively reduces the strength of the remaining bonds at

particles that have already lost some of their bonds. Thus it promotes localization and

allows adjusting brittleness of fracture as the effects of stress concentrations are sort

of inverted. Due to this model the failure properties of granite are reproduced. An

efficient method to simulate the flexible confining pressure system in triaxial tests was

proposed.

A method to extract realistically shaped ballast stones from the granular solid was

proposed. With this novel approach it is possible to obtain irregular, angular stones

made of breakable material. A number of tangent planes on suitably sized ellipsoids,

which are created with a well defined degree of maximal irregularity, is used to de-

fine the volume of the stone. Published approaches [25, 26] are limited to reproduce

the shape of ballast by arranging particles with respect to the generated surface. The

presented method can be applied to any given particle setup, which e.g. reproduces

the strength of rock. Thus it allows studying degradation processes. The strength of

a number of stones shaped with this method and consisting of granular solid is deter-

mined by diametral compression. Statistical evaluation reveals excellent qualitative

agreement with measurements [27]. Different measures of strength are discussed with

respect to the loading conditions that cause failure. It is found that at least in these

simulations compressive stresses are important for the failure of the stones.

Consecutive research will address the settling and degradation processes in bal-

lasted track beds using the presented material model and stone shaping approach. As-

suming that several hundreds to thousands of stones are required to reliably reproduce

the relevant effects total particle numbers will be in the range of one million particles

as it was shown that every stone has to comprise at least 700 to 1000 particles.
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