
Abstract

In this paper, we present an application of GPU-based parallel computation for the
simulation of multidisperse granular flows. We also show an application for the case
of the Corona Electrostatic Separation (CES) process used in the waste management
industry, where a strong electric field is used to separate plastic from metal parti-
cles in dense multidisperse granular flow of oddly-shaped fragments. The two major
bottlenecks of the simulation are the collision detection and the solution of a com-
plementarity problem at each time step; this limits the number of particles that can
be simulated in reasonable time frames on the CPU, so we ported our simulation soft-
ware to a parallel computing architecture. A custom collision detection has been used,
where both broad-phase and narrow-phase collision stages have been designed in or-
der to exploit parallel computation; such an algorithm is able to deal with particles
of different shape and size, as needed in multidisperse granular flow. Also, a custom
solver has been developed for solving the complementarity problem on parallel hard-
ware. Such a solver requires multiple kernels and complex computational primitives
because the complementarity problem does not fit in the perfectly-parallel computa-
tional paradigm, moreover, special care must be used to exploit data coalescence as
much as possible. Finally, external force fields have been introduced, to simulate and
reproduce the physics of electrostatic forces in the CES separation process.

Keywords: GPU, multibody, collision detection, corona electrostatic separator, dif-
ferential variational inequality.

1 Introduction

The simulation of dense granular flows with a large number of frictional contacts be-
tween particles is still an open problem in computational mechanics: our approach
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uses an implicit integration is based on the recent Discrete Variational Inequalities
(DVI) formulation. This leads to Cone-Complementarity Problems (CCP) and permits
larger timesteps when compared to the explicit integration used in classical Discrete
Element Methods (DEM). Typical numerical methods for the simulation of granular
flows are based on large sets of Ordinary Differential Equations (ODEs), where inter-
action between particles are represented by nonlinear, yet smooth, force fields. Such
contact forces are regularized versions of the original non-smooth forces. This is the
most used approach in DEM software [1]. Although the regularization strategy can
leverage on well tested ODE solvers [2], the high stiffness of the force fields require
extremely small time steps, and this is even more critical when the size of the particles
is small. To overcome these difficulties, an alternative approach has been used in this
work: we implemented a simulation framework based on the DVI concept, where the
non-smooth nature of contact forces is directly embedded in the formulation [3, 4, 5].

The DVI model is discretized in time steps, each step requiring the solution of a
second-order CCP, a complementarity problem that is a special type of Variational
Inequality (VI). This leads to an efficient integration method that is stable and robust
even in case of large time steps [6].

In such framework, the two major computational bottlenecks are the solution of the
CCP and the collision detection. The difficulty resides in the fact that both problems
cannot be solved with algorithms that belong to the so-called embarassingly-parallel
class, and special methods must be developed in order to take advantage of parallel
architectures. In [7] we presented a parallel version of a fixed-point algorithm for the
solution of CCP problems, and we implemented it on GPU architectures. In [8] we de-
veloped a parallel collision detection algorithm that can run on GPU and that can deal
efficiently with millions of particles. A brief discussion on the parallel implementation
of each algorithm will be provided in this document.

2 The corona electrostatic separation process

In the following we describe an engineering application that motivated the adoption
of our parallel simulation software.

Mechanical recycling systems are multi-stage systems including size-reduction and
separation technologies. In the de-manufacturing process-chain they are typically in-
cluded between disassembly operations and, for some products, chemical recovery
processes. Corona electrostatic separators (CES) are mainly used to separate con-
ductors from insulators, small particles (typically below 1-2 mm), like copper from
plastics in shredded waste of electrical and electronic equipment. In order to do so,
first particles are charged and then passed through an electric field. More specifically,
the separator uses corona charging or ion discharging to establish a charge on parti-
cles when particles pass between two high-voltage electrodes which create an electric
field. The particles are brought through this field by an input hopper and a vibrating
feeder, which regulates the material flow rate. Particles receive a discharge of elec-
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tricity, which gives the non-metals a high surface charge, causing them to be remain
stacked on the drum and fall in a different bin on the left upon the effect of a dedicated
brush. Metal particles do not become charged, as the charge rapidly dissipates through
the particles to the earthed rotor, and so they fall into the first bin on the right because
they are charged only by electrostatic induction and projected towards the static elec-
trode of opposite sign. Intermediate products, whose conductivity is between the two
kinds of materials or non-liberated particles in the mixture, drop in the middle bin.

The quality of the separation is influenced by controllable parameters like elec-
trode voltage and position, drum speed, splitters position, and feed rate. On the other
end, non-controllable parameters affected the efficiency of the process as particle size,
shape and material mixture. Moreover, due to randomness in the process, the CES
provides contaminated output flows. Two major sources of randomness are relevant in
this process, i.e. the presence of non-liberated particles in the mixture and the influ-
ence of particle-particle interactions and impacts among conductive/non-conductive
particles. For these reasons, the study of metal and non-metal particle trajectories and
particles interaction using numerical models are important because they influence the
output of separation process.

Due to the complexity of the process, modeling the trajectories of particles within
CES is of practical engineering interest. In the literature, several attempts have been
made to simulate particle trajectories in roll-type electrostatic separators, for example,
in [9, 10, 11]. As it can be noticed, existing recycling process models only focus on
single particle trajectories and fail to model the major cause for loss of efficiency in
the separation process, i.e. particle-particle and particle-equipment interactions and
impacts. Instead, this model already implemented on the CPU [12, 13], considers all
the aspects mentioned above.

3 DVI for particle simulations

The DVI formulation stems from the non-smooth nature of contact forces. When
simulating granular flows, simultaneous contacts between pairs of particles might be
in number of thousands, if not millions. Let ni be the normal at the i-th contact point,
given two particles A and B. Let ui and wi be two vectors in the contact plane such
that ni,ui,wi ∈ R3 are orthogonal vectors.

Here we use Φi to represent the signed contact distance, assumed to be differen-
tiable at least in the neighborhood of the contact.

A contact force is Fi,N = γ̂i,nni, where γ̂i,n ≥ 0 is the multiplier that represents the
modulus of the reaction, whereas friction force is represented by the multipliers γ̂i,u,
and γ̂i,w which lead to the tangential component of the reaction Fi,T = γ̂i,uui+ γ̂i,wwi.

The Signorini conditions [3] express the normal contact model using complemen-
tarity constraints:

γ̂i,n ≥ 0 ⊥ Φi(·) ≥ 0 (1)

For tangential forces, arising from sliding or sticking frictional phenomena, we
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Figure 1: Corona Electrostatic separation machine

introduce the Amontons-Coulomb friction model, where the ratio between the normal
and the tangential force is limited by friction coefficient µi. Also, the tangential force
must have a direction that is opposite to the tangential speed vi,T , if any:

µiγ̂i,n ≥
√
γ̂2
i,u + γ̂2

i,w , ||vi,T ||
(
µiγ̂i,n −

√
γ̂2
i,u + γ̂2

i,w

)
= 0,

〈Fi,T ,vi,T 〉 = − ||Fi,T || ||vi,T ||
(2)

For the full multi-contact, multi-body problem, the system state is defined by the
vector of generalized coordinates q ∈ Rmq and the vector of generalized speeds v ∈
Rmv of the particles. We remark that particles are not simple point-like masses: they
can rotate in three-dimensional space, and their rotation is represented with an unit
quaternion ε ∈ H1 to avoid singularities in the parametrization of SO(R, 3). The
linear mapping q̇ = Γ(q)v is described in [14].

We also introduce generalized force fields

ft(q,v, t) = fa(q,v) + fs(q,v, t) + fg(q) + fc(q,v)

including aerodynamic forces fa(q,v) acting on the particles, forces fs(q,v, t) caused
by particle interaction with the magnetic forces in the CES device, gyroscopic forces
fc(q,v), and gravitational forces fg(q). For details on the approximate, analytical
expression of fs and fa that we use in our model we refer to [12].

We introduce the mass matrix M(q) ∈ Rmv×mv , including all the masses and
inertia tensors of the particles on the diagonal.

Bilateral constraints are introduced via a set GB of scalar constraint equations, as-
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sumed differentiable everywhere:

Ψi(~q, t) = 0, i ∈ GB. (3)

We introduce ∇qΨ
i = [∂Ψi/∂~q]

T and ∇ΨiT = ∇qΨ
iT Γ(q), to express the constraint

(3) at the velocity level after differentiation:

dΨi(~q, t)

dt
= ∇ΨiTv +

∂Ψi

∂t
= 0, i ∈ GB. (4)

The term ∂Ψi

∂t
is used for rheonomic (time-dependent) constraints such as, in our case,

the constraint that imposes the rotation of the drum respect to the truss of the CES
device.

Frictional unilateral contacts define a set GA. For each contact i ∈ GA, we introduce
the tangent space generators, that can be derived as tangent constraint Jacobians: Di

γu ,
Di
γw .
We write (2) using the maximum dissipation principle, thus leading to a non-

linear program (γ̂i,u, γ̂i,w) = argmin vT (Dγu γ̂i,u + Dγw γ̂i,w) subject to constraint√
γ̂2
i,u + γ̂2

i,w ≤ µγ̂i,n.

An alternative expression for the friction model can be written by deriving the Fritz
John optimality conditions for the nonlinear program, introducing a multiplier λv and
obtaining

∇γu,γwv
T (Dγu γ̂i,u + Dγw γ̂i,w)− λiv∇γu,γw

(
µiγ̂i,n −

√
γ̂2
i,u + γ̂2

i,w

)
= 0 (5)

µiγ̂i,n −
√
γ̂2
i,u + γ̂2

i,w ≥ 0, ⊥ λiv ≥ 0. (6)

The complete model, including inertial effects, force fields, bilateral constraints,
and unilateral frictional contacts, is the following DVI:

i ∈ GB : Ψi(q, t) = 0
i ∈ GA : γ̂in ≥ 0 ⊥ Φi(q) ≥ 0

∇γu,γwv
T (Dγu γ̂i,u + Dγw γ̂i,w)

−λiv∇γu,γw

(
µiγ̂i,n −

√
γ̂2
i,u + γ̂2

i,w

)
= 0

µiγ̂i,n −
√
γ̂2
i,u + γ̂2

i,w ≥ 0, ⊥ λiv ≥ 0

q̇ = Γ(q)v

M(q)
dv

dt
=

∑
i∈GA

(
γ̂i,nD

i
γn + γ̂i,uD

i
γu + γ̂i,wD

i
γw

)
+

+
∑
i∈GB

γ̂iB∇Ψi + ft(t,q,v)

(7)

The former DVI can be discretized in time introducing a time step h. We set γ =
hγ̂, we use an exponential map Λ(·) for incremental update of rotations in Lie groups
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[15, 6], and we obtain:

i ∈ GB :
1

h
Ψi(~q(l)) +∇ΨiT~v(l+1) +

∂Ψi

∂t
= 0

i ∈ GA : γi,n ≥ 0 ⊥ 1
h
Φi(~q(l)) +∇ΦiT~v(l+1) ≥ 0

∇γu,γwv
T (Dγuγi,u + Dγwγi,w)

−λiv∇γu,γw

(
µiγi,n −

√
γi,u2 + γi,w2

)
= 0

µiγi,n −
√
γi,u2 + γi,w2 ≥ 0, ⊥ λiv ≥ 0

q(l+1) = Λ(q(l),v(l+1), h)

M (l)(v(l+1)) =
∑
i∈GA

(
γi,nD

i
γn + γi,uD

i
γu + γi,wD

i
γw

)
+

+
∑
i∈GB

γiB∇Ψi + hft(t,q,v) +M (l)v(l)

(8)

A relaxation of the original problem, that leads to a convex problem whose solution
is guaranteed, has been proposed in [4] and it is used in our software. The convex form
of the problem above is second-order Cone Complementarity Problem (CCP).

To express the CCP, we introduce the multidimensional cone obtained by perform-
ing the Cartesian product of all three-dimensional Lorentz-cones FC equivalent to
Coloumb-Amontons friction cones, adding also BC = R trivial cones for bilateral
constraint forces, obtaining:

Υ =

(
×
i∈GA

FCi
)
×
(
×
i∈GB

BCi
)
. (9)

We denote the polar cone of Υ as Υ◦. To make the expressions more compact,
we group all the tangent space generators (jacobians) in the sparse DE , we append
all the lagrangian multipliers γi in γE , we append Ψi

h
+ ∂Ψi

∂t
and all Φi

h
in bE , we set

k = Mv(l) + hf
(l)
t and we write:

[
M DE
DT
E 0

]{
v(l+1)

γ
(l+1)
E

}
−
{

k
−bE

}
=

{
0
uE

}
(10)

uE ∈ −Υ◦ ⊥ γE ∈ Υ (11)

One can see that in the much simpler case of bilateral constraint only, Eq.11 be-
comes uE = 0, and Eq.10 becomes a simple linear problem of saddle-point type.

The previous CCP is expressed as a mixed-complementarity, but it can be expressed
also as a pure CCP by introducing the Schur complement N ; this is practicable be-
cause M is easily invertible:

N = DT
EM

−1DE (12)
r = DT

EM
−1k + bE (13)
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The VI now can be rewritten as a CCP:

(NγE + r) ∈ −Υ◦ ⊥ γE ∈ Υ. (14)

For the solution of such CCP we implemented various types of numerical solu-
tion schemes. The fastest method is based on a fixed-point algorithm that solves the
CCP by using a projected Gauss-Seidel iteration: it has slow convergence but its im-
plementation can be parallelizable (as projected block-Gauss-Seidel or a projected
Gauss-Jacobi) on GPU high-performance computing architectures [7].

Other more sophisticated solvers that we tested are based on modified Krylov sub-
space iterations, such as the Nesterov method and the Spectral Projected Gradient
method [16]; in both cases the most relevant computational primitive to be parallelized
is the sparse-matrix by vector multiplication.

4 Parallel implementation of the DVI

The Parallel DVI framework utilizes CUDA and OpenMP in order to accelerate the
solution process. The parallel implementation consists of three key components, The
data manager, the solver and the collision detection algorithm.

The purpose of the data manager is to store the relevant information for the simu-
lation in a parallel friendly manner. In practice this means using large arrays to store
information, enabling efficient cache usage, vectorization and parallelization. The
data manager is a large structure containing several arrays storing collision geometry
and contact information along with position, velocity and other state data. Memory
management for the GPU is performed using the Thrust [17] template library which
simplifies allocation and copy operations of GPU data structures along with provid-
ing implementations of data parallel algorithms required for the solver and collision
detection.

For both Gauss-Jacobi and Krylov based methods the costly operations are gener-
ation of the jacobian matrices and in the case of the Krylov method, a sparse matrix-
vector multiplication. While not compute intensive, these operations are memory
bound and limited by the memory bandwidth of the platform. Because of this, GPU’s
with their higher memory bandwidth and parallel friendly cache structure greatly im-
prove the performance of such operations. In this framework both the Jacobian com-
putation and the linear algebra operations used in the solver have been parallelized.

5 Parallel collision detection

When dealing with complex simulations of the CES with hundred of thousands to
millions of rigid bodies, the collision detection step, because of the large number of
contact events, becomes a bottleneck when compared to other parts of the simulation
process. However, because of the large number of objects and contacts, the problem
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fits into the Single Instruction Multiple Data (SIMD) paradigm. In general, for each
body and contact the same sequence of instructions are performed. Consequently,
an algorithm capable of leveraging SIMD hardware like commodity GPUs was de-
veloped to remove collision detection as the bottleneck for large granular dynamics
simulations.

The collision detection algorithm is performed into two phases, Broad-Phase and
Narrow-Phase. Broad-Phase is where the algorithm quickly determines potential con-
tact pairs based on the current configuration of the system. Once the potential contact
list has been generated the Narrow-Phase algorithm is used to determine the actual
contact information. An outline of the parallel algorithm is presented below, for more
details see [8].

The Broad-Phase algorithm computes whether two bodies are in contact at a given
time. The goal is not to find actual contact information, but rather to determine if
a contact between two objection could potentially occur based on the Axis Aligned
Bounding Boxes of the bodies involved.

An Axis Aligned Bounding Box (AABB) is a bounding box that is always aligned
to the global reference frame, i.e. does not rotate with the object, which simplifies
collision detection. The consequence of using AABBs, is that the volume enclosed
by the bounding box is equal to or greater than the volume of the shape it encloses.
AABB generation is simple and parallelization can be done on a per object basis. See
Fig. 2 for an example of AABB computation for a cylinder in R3.

An overview of the GPU based collision detection algorithm is as follows. The
process beings with identifying intersections between AABBs and a fixed spatial grid.
The size of each cell, or bin (see Fig. 3 for a visual representation of a bin), in this grid
is determined by the average feature size for the simulation. The AABB-bin pairs are
then sorted by their bin id using a parallel key-value sort algorithm [17]. Next, each
bin’s starting index is determined so that the bins’ AABBs can be traversed sequen-
tially. Because the starting index is determined per bin, each bin can be processed in
parallel with an inner loop traversing the contained AABBs. All AABBs touching a
bin are subsequently checked against each other for collisions.

Once potential contacts have been determined the list of contacts is sent to the
Narrow-Phase algorithm which processes each possible contact and determine if it
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actually occurs. To this end an algorithm capable of determining contacts between
convex geometries was implemented on the GPU. This algorithm, called “XenoCol-
lide” [18], is based upon Minkowski Portal Refinement (MPR) [19].

6 Results

Figure 4 shows a typical result from our simulations. The granular flow is multi-
disperse because it represents the outcome of previous shredding processes involving
different materials, therefore we developed an algorithm that can create a constant flow
of particles whose sizing, density, shape and other properties can follow prescribed
probability distributions.

Figure 4: Example of simulated multidisperse granular flow

Figure 5 shows two examples of output mass distributions and simulations param-
eters. Through data post-processing is possible to obtain various mass distributions
according to changes in most machine parameters.

Furthermore the position of two splitter between the collecting boxes of conduct-
ing, middling and nonconducting products are considered. They can move along
the horizontal coordinate at fixed height, and the variation for both splitters is in the
[0, 200] mm range, divided in 60 possible positions. In this case, for simplicity, the
splitters are not physical bodies such as particles or drum, and the interaction of the
particles with these volumes is neglected; splitters are virtual elements considered
only in the post processing phase.
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Figure 5: Example of two output mass distributions from CES simulator

7 Conclusion

We developed a DVI method for simulating multi-disperse granular flows, and we
applied it to the case of a CES machine. The method has been implemented in our
simulation software, and a parallel version has been developed. The computational
bottlenecks of the simulation loop are the solution of the CCP problem and the colli-
sion detection; in case of granular flows with high number of particles, both problems
can benefit from the adoption of GPU parallel processing.
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